1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
# Note: model title and parameter table are inserted automatically
r"""
This model calculates the scattering from a stack of repeating lamellar
structures. The stacks of lamellae (infinite in lateral dimension) are
treated as a paracrystal to account for the repeating spacing. The repeat
distance is further characterized by a Gaussian polydispersity. **This model
can be used for large multilamellar vesicles.**
Definition
----------
In the equations below,
- *scale* is used instead of the mass per area of the bilayer $\Gamma_m$
(this corresponds to the volume fraction of the material in the bilayer,
*not* the total excluded volume of the paracrystal),
- *sld* $-$ *sld_solvent* is the contrast $\Delta \rho$,
- *thickness* is the layer thickness $t$,
- *Nlayers* is the number of layers $N$,
- *d_spacing* is the average distance between adjacent layers
$\langle D \rangle$, and
- *sigma_d* is the relative standard deviation of the Gaussian
layer distance distribution $\sigma_D / \langle D \rangle$.
The scattering intensity $I(q)$ is calculated as
.. math::
I(q) = 2\pi\Delta\rho^2\Gamma_m\frac{P_\text{bil}(q)}{q^2} Z_N(q)
The form factor of the bilayer is approximated as the cross section of an
infinite, planar bilayer of thickness $t$ (compare the equations for the
lamellar model).
.. math::
P_\text{bil}(q) = \left(\frac{\sin(qt/2)}{qt/2}\right)^2
$Z_N(q)$ describes the interference effects for aggregates
consisting of more than one bilayer. The equations used are (3-5)
from the Bergstrom reference:
.. math::
Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \langle D \rangle)}
+ x_N S_N + (1 - x_N) S_{N+1}
where
.. math::
S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \langle D \rangle)]^2
and
.. math::
a_N &= 4w^2 - 2(w^3 + w) \cos(q \langle D \rangle) \\
&\quad - 4w^{N+2}\cos(Nq \langle D \rangle)
+ 2 w^{N+3}\cos[(N-1)q \langle D \rangle]
+ 2w^{N+1}\cos[(N+1)q \langle D \rangle]
for the layer spacing distribution $w = \exp(-\sigma_D^2 q^2/2)$.
Non-integer numbers of stacks are calculated as a linear combination of
the lower and higher values
.. math::
N_L = x_N N + (1 - x_N)(N+1)
The 2D scattering intensity is the same as 1D, regardless of the orientation
of the $q$ vector which is defined as
.. math::
q = \sqrt{q_x^2 + q_y^2}
Reference
---------
#. M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf,
*J. Phys. Chem. B*, 103 (1999) 9888-9897
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
import numpy as np
from numpy import inf
name = "lamellar_stack_paracrystal"
title = "Random lamellar sheet with paracrystal structure factor"
description = """\
[Random lamellar phase with paracrystal structure factor]
randomly oriented stacks of infinite sheets
with paracrytal S(Q), having polydisperse spacing.
sld = sheet scattering length density
sld_solvent = solvent scattering length density
background = incoherent background
scale = scale factor
"""
category = "shape:lamellae"
single = False
# ["name", "units", default, [lower, upper], "type","description"],
parameters = [["thickness", "Ang", 33.0, [0, inf], "volume",
"sheet thickness"],
["Nlayers", "", 20, [1, inf], "",
"Number of layers"],
["d_spacing", "Ang", 250., [0.0, inf], "",
"lamellar spacing of paracrystal stack"],
["sigma_d", "Ang", 0.0, [0.0, inf], "",
"Sigma (polydispersity) of the lamellar spacing"],
["sld", "1e-6/Ang^2", 1.0, [-inf, inf], "sld",
"layer scattering length density"],
["sld_solvent", "1e-6/Ang^2", 6.34, [-inf, inf], "sld",
"Solvent scattering length density"],
]
source = ["lamellar_stack_paracrystal.c"]
form_volume = """
return 1.0;
"""
def random():
"""Return a random parameter set for the model."""
total_thickness = 10**np.random.uniform(2, 4.7)
Nlayers = np.random.randint(2, 200)
d_spacing = total_thickness / Nlayers
thickness = d_spacing * np.random.uniform(0, 1)
# Let polydispersity peak around 15%; 95% < 0.4; max=100%
sigma_d = np.random.beta(1.5, 7)
pars = dict(
thickness=thickness,
Nlayers=Nlayers,
d_spacing=d_spacing,
sigma_d=sigma_d,
)
return pars
#
tests = [
[{'scale': 1.0, 'background': 0.0, 'thickness': 33., 'Nlayers': 20.0,
'd_spacing': 250., 'sigma_d': 0.2, 'sld': 1.0,
'sld_solvent': 6.34, 'thickness_pd': 0.0, 'thickness_pd_n': 40},
[0.001, 0.215268], [21829.3, 0.00487686]],
]
# ADDED by: RKH ON: 18Mar2016 converted from sasview previously,
# now renaming everything & sorting the docs
|