File: SasView_polymer_micelle.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (430 lines) | stat: -rw-r--r-- 13,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_polymer_micelle
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView polymer_micelle model component as sample description.
*
* %Description
*
* SasView_polymer_micelle component, generated from polymer_micelle.c in sasmodels.
*
* Example: 
*  SasView_polymer_micelle(ndensity, v_core, v_corona, sld_solvent, sld_core, sld_corona, radius_core, rg, d_penetration, n_aggreg, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     pd_radius_core=0.0, pd_rg=0.0)
*
* %Parameters
* INPUT PARAMETERS:
* ndensity: [1e15/cm^3] ([0.0, inf]) Number density of micelles.
* v_core: [Ang^3] ([0.0, inf]) Core volume .
* v_corona: [Ang^3] ([0.0, inf]) Corona volume.
* sld_solvent: [1e-6/Ang^2] ([0.0, inf]) Solvent scattering length density.
* sld_core: [1e-6/Ang^2] ([0.0, inf]) Core scattering length density.
* sld_corona: [1e-6/Ang^2] ([0.0, inf]) Corona scattering length density.
* radius_core: [Ang] ([0.0, inf]) Radius of core ( must be >> rg ).
* rg: [Ang] ([0.0, inf]) Radius of gyration of chains in corona.
* d_penetration: [] ([-inf, inf]) Factor to mimic non-penetration of Gaussian chains.
* n_aggreg: [] ([-inf, inf]) Aggregation number of the micelle.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.
* pd_radius_core: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable.
* pd_rg: [] (0,inf) defined as (dx/x), where x is de mean value and dx the standard devition of the variable
*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_polymer_micelle

SETTING PARAMETERS (
        ndensity=8.94,
        v_core=62624.0,
        v_corona=61940.0,
        sld_solvent=6.4,
        sld_core=0.34,
        sld_corona=0.8,
        radius_core=45.0,
        rg=20.0,
        d_penetration=1.0,
        n_aggreg=6.0,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0,
        pd_radius_core=0.0,
        pd_rg=0.0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel polymer_micelle */
#define HAS_Iq

#ifndef SAS_HAVE_sas_3j1x_x
#define SAS_HAVE_sas_3j1x_x

#line 1 "sas_3j1x_x"
/**
* Spherical Bessel function 3*j1(x)/x
*
* Used for low q to avoid cancellation error.
* Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
* in this case it is likely cancellation errors in the original expression
* using double precision that are the source.
*/
double sas_3j1x_x(double q);

// The choice of the number of terms in the series and the cutoff value for
// switching between series and direct calculation depends on the numeric
// precision.
//
// Point where direct calculation reaches machine precision:
//
//   single machine precision eps 3e-8 at qr=1.1 **
//   double machine precision eps 4e-16 at qr=1.1
//
// Point where Taylor series reaches machine precision (eps), where taylor
// series matches direct calculation (cross) and the error at that point:
//
//   prec   n eps  cross  error
//   single 3 0.28  0.4   6.2e-7
//   single 4 0.68  0.7   2.3e-7
//   single 5 1.18  1.2   7.5e-8
//   double 3 0.01  0.03  2.3e-13
//   double 4 0.06  0.1   3.1e-14
//   double 5 0.16  0.2   5.0e-15
//
// ** Note: relative error on single precision starts increase on the direct
// method at qr=1.1, rising from 3e-8 to 5e-5 by qr=1e3.  This should be
// safe for the sans range, with objects of 100 nm supported to a q of 0.1
// while maintaining 5 digits of precision.  For usans/sesans, the objects
// are larger but the q is smaller, so again it should be fine.
//
// See explore/sph_j1c.py for code to explore these ranges.

// Use 4th order series
#if FLOAT_SIZE>4
#define SPH_J1C_CUTOFF 0.1
#else
#define SPH_J1C_CUTOFF 0.7
#endif
#pragma acc routine seq
double sas_3j1x_x(double q)
{
    // 2017-05-18 PAK - support negative q
    if (fabs(q) < SPH_J1C_CUTOFF) {
        const double q2 = q*q;
        return (1.0 + q2*(-3./30. + q2*(3./840. + q2*(-3./45360.))));// + q2*(3./3991680.)))));
    } else {
        double sin_q, cos_q;
        SINCOS(q, sin_q, cos_q);
        return 3.0*(sin_q/q - cos_q)/(q*q);
    }
}


#endif // SAS_HAVE_sas_3j1x_x


#ifndef SAS_HAVE_polymer_micelle
#define SAS_HAVE_polymer_micelle

#line 1 "polymer_micelle"
double Iq_polymer_micelle(double q,
        double ndensity,
        double v_core,
        double v_corona,
        double solvent_sld,
        double core_sld,
        double corona_sld,
        double radius_core,
        double rg,
        double d_penetration,
        double n_aggreg);

static double micelle_spherical_kernel(double q,
        double ndensity,
        double v_core,
        double v_corona,
        double solvent_sld,
        double core_sld,
        double corona_sld,
        double radius_core,
        double rg,
        double d_penetration,
        double n_aggreg)
{
    const double rho_solv = solvent_sld;     // sld of solvent [1/A^2]
    const double rho_core = core_sld;        // sld of core [1/A^2]
    const double rho_corona = corona_sld;    // sld of corona [1/A^2]

    const double beta_core = v_core * (rho_core - rho_solv);
    const double beta_corona = v_corona * (rho_corona - rho_solv);

    // Self-correlation term of the core
    const double bes_core = sas_3j1x_x(q*radius_core);
    const double term1 = square(n_aggreg*beta_core*bes_core);

    // Self-correlation term of the chains
    const double qrg2 = square(q*rg);
    const double debye_chain = (qrg2 == 0.0) ? 1.0 : 2.0*(expm1(-qrg2)+qrg2)/(qrg2*qrg2);
    const double term2 = n_aggreg * beta_corona * beta_corona * debye_chain;

    // Interference cross-term between core and chains
    const double chain_ampl = (qrg2 == 0.0) ? 1.0 : -expm1(-qrg2)/qrg2;
    const double bes_corona = sas_sinx_x(q*(radius_core + d_penetration * rg));
    const double term3 = 2.0 * n_aggreg * n_aggreg * beta_core * beta_corona *
                 bes_core * chain_ampl * bes_corona;

    // Interference cross-term between chains
    const double term4 = n_aggreg * (n_aggreg - 1.0)
                 * square(beta_corona * chain_ampl * bes_corona);

    // I(q)_micelle : Sum of 4 terms computed above
    double i_micelle = term1 + term2 + term3 + term4;

    // rescale from [A^2] to [cm^2]
    i_micelle *= 1.0e-13;

    // "normalize" by number density --> intensity in [cm-1]
    i_micelle *= ndensity;

    return(i_micelle);

}

double Iq_polymer_micelle(double q,
        double ndensity,
        double v_core,
        double v_corona,
        double solvent_sld,
        double core_sld,
        double corona_sld,
        double radius_core,
        double rg,
        double d_penetration,
        double n_aggreg)
{
    return micelle_spherical_kernel(q,
            ndensity,
            v_core,
            v_corona,
            solvent_sld,
            core_sld,
            corona_sld,
            radius_core,
            rg,
            d_penetration,
            n_aggreg);
}


#endif // SAS_HAVE_polymer_micelle



/* END Required header for SASmodel polymer_micelle */
%}
    DECLARE
%{
  double shape;
  double my_a_k;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  /*TODO fix absorption*/
  my_a_k = model_abs; /* assume absorption is given in 1/m */

%}


TRACE
%{
  double l0, l1, k, l_full, l, dl, d_Phi;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection photon trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
  if(intersect)
  {
    if(l0 < 0)
      ABSORB;

    /* Photon enters at l0. */
    k = sqrt(kx*kx + ky*ky + kz*kz);
    l_full = (l1 - l0);          /* Length of full path through sample */
    dl = rand01()*(l1 - l0) + l0;    /* Point of scattering */
    PROP_DL(dl);                     /* Point of scattering */
    l = (dl-l0);                   /* Penetration in sample */

    kx_i=kx;
    ky_i=ky;
    kz_i=kz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(kx, ky, kz);
    kx *= k;
    ky *= k;
    kz *= k;
    qx = (kx_i-kx);
    qy = (ky_i-ky);
    qz = (kz_i-kz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    
    double trace_radius_core=radius_core;
    double trace_rg=rg;
    if ( pd_radius_core!=0.0 || pd_rg!=0.0 ){
    trace_radius_core = (randnorm()*pd_radius_core+1.0)*radius_core;
    trace_rg = (randnorm()*pd_rg+1.0)*rg;
    }

        


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_polymer_micelle(q, ndensity, v_core, v_corona, sld_solvent, sld_core, sld_corona, trace_radius_core, trace_rg, d_penetration, n_aggreg);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McXtrace: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));


    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END