File: SasView_teubner_strey.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (273 lines) | stat: -rw-r--r-- 8,293 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*******************************************************************************
*
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: SasView_teubner_strey
*
* %Identification
* Written by: Jose Robledo
* Based on sasmodels from SasView
* Origin: FZJ / DTU / ESS DMSC
*
*
* SasView teubner_strey model component as sample description.
*
* %Description
*
* SasView_teubner_strey component, generated from teubner_strey.c in sasmodels.
*
* Example: 
*  SasView_teubner_strey(volfraction_a, sld_a, sld_b, d, xi, 
*     model_scale=1.0, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005, R=0, 
*     int target_index=1, target_x=0, target_y=0, target_z=1,
*     focus_xw=0.5, focus_yh=0.5, focus_aw=0, focus_ah=0, focus_r=0, 
*     )
*
* %Parameters
* INPUT PARAMETERS:
* volfraction_a: [] ([0, 1.0]) Volume fraction of phase a.
* sld_a: [1e-6/Ang^2] ([-inf, inf]) SLD of phase a.
* sld_b: [1e-6/Ang^2] ([-inf, inf]) SLD of phase b.
* d: [Ang] ([0, inf]) Domain size (periodicity).
* xi: [Ang] ([0, inf]) Correlation length.
* Optional parameters:
* model_abs: [ ] Absorption cross section density at 2200 m/s.
* model_scale: [ ] Global scale factor for scattering kernel. For systems without inter-particle interference, the form factors can be related to the scattering intensity by the particle volume fraction.
* xwidth: [m] ([-inf, inf]) Horiz. dimension of sample, as a width.
* yheight: [m] ([-inf, inf]) vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] ([-inf, inf]) depth of sample
* R: [m] Outer radius of sample in (x,z) plane for cylinder/sphere.
* target_x: [m] relative focus target position.
* target_y: [m] relative focus target position.
* target_z: [m] relative focus target position.
* target_index: [ ] Relative index of component to focus at, e.g. next is +1.
* focus_xw: [m] horiz. dimension of a rectangular area.
* focus_yh: [m], vert. dimension of a rectangular area.
* focus_aw: [deg], horiz. angular dimension of a rectangular area.
* focus_ah: [deg], vert. angular dimension of a rectangular area.
* focus_r: [m] case of circular focusing, focusing radius.

*
* %Link
* %End
*******************************************************************************/
DEFINE COMPONENT SasView_teubner_strey

SETTING PARAMETERS (
        volfraction_a=0.5,
        sld_a=0.3,
        sld_b=6.3,
        d=100.0,
        xi=30.0,
        model_scale=1.0,
        model_abs=0.0,
        xwidth=0.01,
        yheight=0.01,
        zdepth=0.005,
        R=0,
        target_x=0,
        target_y=0,
        target_z=1,
        int target_index=1,
        focus_xw=0.5,
        focus_yh=0.5,
        focus_aw=0,
        focus_ah=0,
        focus_r=0)


SHARE %{
%include "sas_kernel_header.c"

/* BEGIN Required header for SASmodel teubner_strey */
#define HAS_Iq

#ifndef SAS_HAVE_teubner_strey
#define SAS_HAVE_teubner_strey

#line 1 "teubner_strey"
#include <math.h>

#define PI 3.14159265358979323846

double Iq_teubner_strey(double q, double volfraction_a, double sld_a, double sld_b, double d, double xi);

#pragma acc routine seq
double Iq_teubner_strey(double q, double volfraction_a, double sld_a, double sld_b, double d, double xi) {
    double drho = sld_a - sld_b;
    double k = 2.0 * PI * xi / d;
    double a2 = pow(1.0 + k * k, 2.0);
    double c1 = 2.0 * xi * xi * (1.0 - k * k);
    double c2 = xi * xi * xi * xi;
    double prefactor = 8.0 * PI * volfraction_a * (1.0 - volfraction_a) * drho * drho * c2 / xi;
    return 1.0e-4 * prefactor / (c2 * q * q + c1 * q + a2);
}



#endif // SAS_HAVE_teubner_strey



/* END Required header for SASmodel teubner_strey */
%}
    DECLARE
%{
  double shape;
  double my_a_k;
%}

INITIALIZE
%{
shape=-1;  /* -1:no shape, 0:cyl, 1:box, 2:sphere  */
if (xwidth && yheight && zdepth)
    shape=1;
  else if (R > 0 && yheight)
    shape=0;
  else if (R > 0 && !yheight)
    shape=2;
  if (shape < 0)
    exit(fprintf(stderr, "SasView_model: %s: sample has invalid dimensions.\n"
                         "ERROR     Please check parameter values.\n", NAME_CURRENT_COMP));

  /* now compute target coords if a component index is supplied */
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &target_x, &target_y, &target_z);
  }

  if (!(target_x || target_y || target_z)) {
    printf("SasView_model: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    target_z=1;
  }

  /*TODO fix absorption*/
  my_a_k = model_abs; /* assume absorption is given in 1/m */

%}


TRACE
%{
  double l0, l1, k, l_full, l, dl, d_Phi;
  double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
  double f, solid_angle, kx_i, ky_i, kz_i, q, qx, qy, qz;
  char intersect=0;

  /* Intersection photon trajectory / sample (sample surface) */
  if (shape == 0){
    intersect = cylinder_intersect(&l0, &l1, x, y, z, kx, ky, kz, R, yheight);}
  else if (shape == 1){
    intersect = box_intersect(&l0, &l1, x, y, z, kx, ky, kz, xwidth, yheight, zdepth);}
  else if (shape == 2){
    intersect = sphere_intersect(&l0, &l1, x, y, z, kx, ky, kz, R);}
  if(intersect)
  {
    if(l0 < 0)
      ABSORB;

    /* Photon enters at l0. */
    k = sqrt(kx*kx + ky*ky + kz*kz);
    l_full = (l1 - l0);          /* Length of full path through sample */
    dl = rand01()*(l1 - l0) + l0;    /* Point of scattering */
    PROP_DL(dl);                     /* Point of scattering */
    l = (dl-l0);                   /* Penetration in sample */

    kx_i=kx;
    ky_i=ky;
    kz_i=kz;
    if ((target_x || target_y || target_z)) {
      aim_x = target_x-x;            /* Vector pointing at target (anal./det.) */
      aim_y = target_y-y;
      aim_z = target_z-z;
    }
    if(focus_aw && focus_ah) {
      randvec_target_rect_angular(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
    } else if(focus_xw && focus_yh) {
      randvec_target_rect(&kx, &ky, &kz, &solid_angle,
        aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
    } else {
      randvec_target_circle(&kx, &ky, &kz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
    }
    NORM(kx, ky, kz);
    kx *= k;
    ky *= k;
    kz *= k;
    qx = (kx_i-kx);
    qy = (ky_i-ky);
    qz = (kz_i-kz);
    q = sqrt(qx*qx+qy*qy+qz*qz);
    


    // Sample dependent. Retrieved from SasView./////////////////////
    float Iq_out;
    Iq_out = 1;

    Iq_out = Iq_teubner_strey(q, volfraction_a, sld_a, sld_b, d, xi);


    float vol;
    vol = 1;

    // Scale by 1.0E2 [SasView: 1/cm  ->   McXtrace: 1/m]
    Iq_out = model_scale*Iq_out / vol * 1.0E2;

    
    p *= l_full*solid_angle/(4*PI)*Iq_out*exp(-my_a_k*(l+l1));


    SCATTER;
  }
%}

MCDISPLAY
%{

  if (shape == 0) {	/* cylinder */
    circle("xz", 0,  yheight/2.0, 0, R);
    circle("xz", 0, -yheight/2.0, 0, R);
    line(-R, -yheight/2.0, 0, -R, +yheight/2.0, 0);
    line(+R, -yheight/2.0, 0, +R, +yheight/2.0, 0);
    line(0, -yheight/2.0, -R, 0, +yheight/2.0, -R);
    line(0, -yheight/2.0, +R, 0, +yheight/2.0, +R);
  }
  else if (shape == 1) { 	/* box */
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
  else if (shape == 2) {	/* sphere */
    circle("xy", 0,  0.0, 0, R);
    circle("xz", 0,  0.0, 0, R);
    circle("yz", 0,  0.0, 0, R);
  }
%}
END