1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
#ifndef MX_CRYSTALS_C
#define MX_CRYSTALS_C
void Mx_CubicCrystalChi(double complex *chi0, double complex *chih, double *k0mag, double *hscale, double *thetaB,
double f00, double f0h, double fp, double fpp, double V, int h, int k, int l,
double debye_waller_B, double E,
int crystal_type, double fscaler, double fscalei)
{
double lambda, a, d;
lambda = 2*PI/(E2K*E); /* wavelength in Å, E in keV, using built-in constants for safety */
a = cbrt(V); /* side length of unit cubic cell (Å)*/
d = a/sqrt(h*h + k*k + l*l); /* d-spacing (Å)*/
if (lambda>2*d){
/*cannot close scattering triangle, set all returns to 0 and exit*/
*thetaB=0;
*k0mag=0;
*hscale=0;
*chi0=*chih=0;
return;
}
*thetaB = asin(lambda/(2*d)); /* kinematical bragg angle (rad) */
*k0mag=2.0*M_PI/lambda; /* magnitude of k0 consistent with energy scale */
*hscale=2.0*M_PI/d; /* minus sign to make it point into the crystal */
/* structure factor rules from:
https://en.wikipedia.org/wiki/Structure_factor section on diamond cubic crystals
*/
double complex fscaleh;
double fscale0;
switch(crystal_type) {
case Mx_crystal_explicit:
/* use explicitly provided structure factor scale factor */
break;
case Mx_crystal_diamond: /* diamond lattice rules */
if (((h+k+l)%2) != 0){ /* (111) etc. odd sum eflection */
fscaleh=4+4*I;
fscale0=8;
}
else if (((h+k+l)%4)==0){ /* (400) etc. h+k+l=4n reflection */
fscaleh=8;
fscale0=8;
} else {
/* any other reflection is forbidden, will get a divide-by-zero somewhere, but user is
responsible for only using allowed reflections */
fscaleh=0;
fscale0=0;
}
break;
case Mx_crystal_fcc: /* fcc lattice rules */
{
int hpar=h%2, kpar=k%2, lpar=l%2;
if ( hpar==kpar && kpar==lpar ) { /* all parities the same */
fscaleh=4;
fscale0=4;
}
else { /* mixed parity forbidden */
fscaleh=0;
fscale0=0;
}
}
break;
case Mx_crystal_bcc: /* bcc lattice rules */
if ( ((h+k+l)%2) == 0 ) { /* h+k+l even */
fscaleh=2;
fscale0=2;
}
else { /* otherwise forbidden */
fscaleh=0;
fscale0=0;
}
break;
default:
fscaleh=fscale0=0; /* fail later if unknown crystal type */
break;
}
double complex F0=fscale0*((f00+fp)+fpp*I); // NEVER CHECKED for crystals other than diamond structure
double complex Fh=cabs(fscaleh)*((f0h+fp)+fpp*I);
double GAMMA=RE*lambda*lambda/(PI*V);
double M=debye_waller_B*SQR(sin(*thetaB)/lambda)*(2./3.); /* isotropic temperature factor */
*chi0 = -F0*GAMMA;
*chih = -Fh*GAMMA*exp(-M);
}
int Mx_DarwinReflectivityBC(double *Rsig, double *Rpi, double kh[3],
const double k0hat[3], const double nhat[3],
const double alpha[3],
double complex chi0, double complex chih, double complex chihbar,
double k0mag, double hscale, double thetaB
)
{
double k0[3]={k0hat[0]*k0mag, k0hat[1]*k0mag, k0hat[2]*k0mag}; /* actual incoming k vector */
double H[3]={alpha[0]*hscale, alpha[1]*hscale, alpha[2]*hscale};
/* now we have to solve for the free-space kh vector outside the crystal.
The requirement is that kh = Kh + q2 * nhat, and is pure real and has the same magnitude as k0.
Thus, kh = k0 + q1 * nhat + H + q2 * nhat, |kh| = |k0|, and (q1 + q2) must be real to make kh real.
if (q1 + q2) == q,
q^2 + H^2 + 2 q (k0+H).nhat + 2 k0.H = 0
Note that this is independent of the messy dispersion relationship, and the same for both polarizations.
*/
double k0plusH[3];
vplus(k0plusH, k0, H); // temporary k0+H as needed in second poly term above
double bb=2*vdot(k0plusH, nhat);
double cc = vdot(H,H) +2*vdot(k0,H);
double root1, root2;
qsolve(root1, root2, 1., bb, cc, sqrt); //root2 is the small root
vplus(kh, k0plusH, root2*nhat);
for (int i=0; i<2; i++) { // do reflectivity using shared geometry for both polarizations
double C=(i==0)?fabs(cos(2*thetaB)) : 1; // polarization factor
double complex xi0;
double K0[3], Kh[3];
double complex kqvals[4], xi0vals[4], xihvals[4];
int fail=Mx_DiffractionDispersion(kqvals, xi0vals, xihvals,
k0, nhat, H, chi0, chih*chihbar, C, 1); // get first (interesting) root only
double complex kq=kqvals[0];
xi0=xi0vals[0];
vplus(K0, k0, creal(kq)*nhat);
vplus(Kh, K0, H);
/* compute the asymmetry b which is the ratio of the sizes of the footprint of the beam on the crystal */
double b = (vdot(K0, nhat)/sqrt(vdot(K0,K0)))/(vdot(Kh, nhat)/sqrt(vdot(Kh, Kh)));
if(fail) {
*Rsig=0;
*Rpi=0;
return 1;
}
double complex eq24=2*xi0/(k0mag*C*chih); // B&C equation 24
double eratio=cabs(eq24);
#ifdef MCDEBUG
#ifndef OPENACC
fprintf(stderr,
"Bragg Geometry results: k0=(%.3f %.3f %.3f), kh=(%.3f %.3f %.3f) "
"xi0 = (%.3e + %.3e i) "
"b0=%.4f "
"eq24 = (%.3e + %.3e i) "
"R = %.3e "
"\n",
k0[0], k0[1], k0[2], kh[0], kh[1], kh[2],
creal(xi0), cimag(xi0),
b,
creal(eq24), cimag(eq24), eratio*eratio/fabs(b));
#endif
#endif
if(i==0) *Rpi=eratio*eratio/fabs(b); // the fabs(b0) is the footprint correction
else *Rsig=eratio*eratio/fabs(b);
}
return 0;
}
void cross(double res[3], const double v1[3], const double v2[3], int unitize)
{ // use our own cross product which takes arrays directly to reduce pointer shuffling
res[0]=v1[1]*v2[2]-v1[2]*v2[1];
res[1]=v1[2]*v2[0]-v1[0]*v2[2];
res[2]=v1[0]*v2[1]-v1[1]*v2[0];
if(unitize) {
double l=sqrt(res[0]*res[0]+res[1]*res[1]+res[2]*res[2]);
res[0]/=l;
res[1]/=l;
res[2]/=l;
}
}
int Mx_DiffractionDispersion(double complex kqvals[4], double complex xi0[4], double complex xih[4],
const double k0[3], const double nhat[3],
const double H[3],
double complex chi0, double complex chih_chihbar, double C, int nroots){
/* compute the Batterman & Cole eq. 17 dispersion relation, and associated quantities.
nroots sets how many roots to find. They are sorted, with the first root being the attenuated incoming ray,
then the amplified incoming ray, then the two 'big roots'.
Normally only nroots=1 is interesting for Bragg diffraction.
*/
double k0mag=sqrt(vdot(k0,k0));
/* B&C equation 17 is ( |k0 + kq nhat|^2 - k0^2(1+chi0) ) ( |k0 + kq nhat + H|^2 - k0^2(1+chi0) ) = k^4 C^2 chih chihbar */
double k0plusH[3];
vplus(k0plusH, k0, H); // temporary k0+H as needed in second poly term above
double complex poly1[3], poly2[3], poly[5], deriv[4];
poly1[2]=1;
poly1[1]=2*vdot(k0,nhat);
poly1[0]=-k0mag*k0mag*chi0;
poly2[2]=1.;
poly2[1]=2*vdot(k0plusH,nhat);
poly2[0]=-k0mag*k0mag*chi0+vdot(H,H)+2*vdot(k0,H);
/* for multiplying these polys, just write it out explicitly */
poly[0]=poly1[0]*poly2[0];
poly[1]=poly1[0]*poly2[1]+poly1[1]*poly2[0];
poly[2]=poly1[0]*poly2[2]+poly1[1]*poly2[1]+poly1[2]*poly2[0];
poly[3]=poly1[1]*poly2[2]+poly1[2]*poly2[1];
poly[4]=poly1[2]*poly2[2];
double complex epsilon=(k0mag*k0mag*k0mag*k0mag*C*C)*chih_chihbar; // right-hand side of dispersion
poly[0]-=epsilon;
deriv[3]=4*poly[4];
deriv[2]=3*poly[3];
deriv[1]=2*poly[2];
deriv[0]=1*poly[1];
/* the dispersion polynomial is p1*p2-epsilon = 0; first, find big roots and factor out to leave only a quadratic with small (interesting) roots */
/* big roots will be _close_ to big roots of p1 and p2, use these as guesses */
double complex p1b, p1s, p2b, p2s;
// p1b and p2b are always larger root in magnitude
qsolve(p1b, p1s, poly1[2], poly1[1], poly1[0], csqrt);
qsolve(p2b, p2s, poly2[2], poly2[1], poly2[0], csqrt);
/* now, (x-p1b)(x-p2b)(x-p1s)(x-p2s)-epsilon is the full poly, but near the interesting region around p1s, p2s, flatten first two terms */
/* so x0 = (p1s+p2s)*0.5, this is (x-p1s)(x-p2s)-epsilon/((x0-p1b)(x0-p2b)) = 0 to get approximate roots of full poly */
double complex x0=(p1s+p2s)*0.5;
double complex fp[3] = {p1s*p2s-epsilon/((x0-p1b)*(x0-p2b)), -(p1s+p2s), 1.0 };
// factored poly roots, should be very close to exact roots
// practical note: looking at convergence, these roots are so close, one could probably drop the Newton's method refinement
// completely. However, since this code is intended to be pedantically correct, I will do the refinement.
double complex initroots[4];
qsolve(initroots[0], initroots[1], fp[2], fp[1], fp[0], csqrt); // solution to factored polynomial is starting point for newton's method
int rootloops, fail=0;
// make sure the first root has im(k).re(k) < 0 so beam is attenuated. Since re(k) is nearly k0 and im(k) is im(kq)*nhat,
// we need k0.nhat * im(k) < 0
double kdotnhat=vdot(k0, nhat);
if(cimag(initroots[0])*kdotnhat > 0) {
if(cimag(initroots[1])*kdotnhat < 0) {
double complex swap;
swap=initroots[0]; initroots[0]=initroots[1]; initroots[1]=swap;
} else {
// neither root has im(k) < 0, no physically possible solution. Should never happen.
#ifndef OPENACC
fprintf(stderr, "PerfectCrystal: No attenuating solution for incoming vector found, r1=(%.3e + %.3e i) r2=(%.3e + %.3e i) \n",
creal(initroots[0]), cimag(initroots[0]), creal(initroots[1]), cimag(initroots[1]));
#endif
return -1;
}
}
initroots[2]=p1b;
initroots[3]=p2b; // the two big roots are last in the list
for(rootloops=0; rootloops < nroots; rootloops++) {
double complex dd, kq, pv, dv;
kq=initroots[rootloops];
#if MCDEBUG
#ifndef OPENACC
fprintf(stderr,"Batterman Cole dispersion Newton Iterations, starting at root =(%.3e + %.3e i) \n",
creal(kq), cimag(kq)
);
#endif
#endif
int stepcount=0;
do {
pv=(((poly[4]*kq+poly[3])*kq+poly[2])*kq+poly[1])*kq+poly[0]; // poly value
dv=((deriv[3]*kq+deriv[2])*kq+deriv[1])*kq+deriv[0]; // derivative value
dd=-pv/dv; // Newton's method step
kq+=dd;
stepcount++;
#ifdef MCDEBUG_EXTRA
#ifndef OPENACC
fprintf(stderr,"Batterman Cole dispersion Newton Iterations, starting at root =(%.3e + %.3e i) \n",
fprintf(stderr,"Batterman Cole dispersion Newton Iterations, step count=%d, pv=%.3e dv=%.3e "
"kq=(%.3e + %.3e I) shift=%.3e\n",
stepcount,
cabs(pv), cabs(dv), creal(kq), cimag(kq), cabs(dd) );
#endif
#endif
} while ( ((cabs(dd) > 1e-15) && (stepcount < 20)) );
kqvals[rootloops]=kq;
fail= (stepcount == 20);
if(fail) { // should never happen. always converges in about 3 steps!
#ifndef OPENACC
fprintf(stderr,"****Newton's method convergence failure in Bragg_Geometry, killing particle!\n");
#endif
kq=initroots[rootloops]; // leave offset plausible, close to quadratic start
}
// batterman and cole eq. 18, exact definitions of xi0 and xih
// but adjust for numerical stability.
// The smaller of xi0, xih depends on delicate cancellation of the polynomial. The larger doesn't.
// Thus, replace the small polynomial with epsilon / (large one)
// This is equivalent to the Numerical Recipes trick for stable computation of quadratic roots
double complex poly1v=(poly1[2]*kq+poly1[1])*kq+poly1[0];
double complex poly2v=(poly2[2]*kq+poly2[1])*kq+poly2[0];
if( fabs(creal(poly1v)) < fabs(creal(poly2v)) ) {
poly1v=epsilon/poly2v;
} else {
poly2v=epsilon/poly1v;
}
xi0[rootloops]=poly1v/(2*k0mag);
xih[rootloops]=poly2v/(2*k0mag);
}
return fail;
}
int Mx_LaueReflectivityBC(double *Rsig, double *Rpi, double *Tsig, double *Tpi,
double *Asig, double *Api, // primary attenuation
double kh[3],
const double k0hat[3], const double nhat[3],
const double alpha[3],
double complex chi0, double complex chih, double complex chihbar,
double k0mag, double hscale, double thetaB, double thickness)
{
double k0[3]={k0hat[0]*k0mag, k0hat[1]*k0mag, k0hat[2]*k0mag}; /* actual incoming k vector */
double H[3]={alpha[0]*hscale, alpha[1]*hscale, alpha[2]*hscale};
/* a bunch of precomputed dot products we will use over and over.*/
double k0dotnhat=vdot(k0,nhat);
double Hdotnhat=vdot(H, nhat);
double k0dotH=vdot(k0,H);
double HdotH=vdot(H,H);
/* now we have to solve for the free-space kh vector outside the crystal.
The requirement is that kh = Kh + e * nhat, and is pure real and has the same magnitude as k0.
Thus, kh = k0 + kq*nhat + H + e*nhat, |kh| = |k0|, and kq+e must be real to make kh real.
if kq+e == q,
q^2 + H^2 + 2 q (k0+H).nhat + 2 k0.H = 0
Note that this is independent of the messy dispersion relationship, and the same for both polarizations.
*/
double k0plusH[3];
vplus(k0plusH, k0, H);
double bb=2*(k0dotnhat+Hdotnhat);
double cc = HdotH +2*k0dotH;
double root1, root2;
qsolve(root1, root2, 1., bb, cc, sqrt); //root2 is the small root
vplus(kh, k0plusH, root2*nhat);
for (int i=0; i<2; i++) { // do reflectivity using shared geometry for both polarizations
double C=(i==0)?fabs(cos(2*thetaB)) : 1; // polarization factor
double complex kqvals[4], xi0vals[4], xihvals[4];
int fail=Mx_DiffractionDispersion(kqvals, xi0vals, xihvals,
k0, nhat, H, chi0, chih*chihbar, C, 2); // get first 2 (alpha and beta) roots only
double complex a1=2*xi0vals[0]/(k0mag*C*chih); // complex Eha/E0a from B&C eq. 24
double complex a2=2*xi0vals[1]/(k0mag*C*chih); // complex Ehb/E0a from B&C eq. 24
// compute amplitudes from solving B&C eqns. 40
double complex i1=a2/(a2-a1); // e0a/e0i
double complex i2=-a1/(a2-a1); // e0a/e0i
double complex ix=-thickness*1e10*I; // convert thickness to angstroms for absorption
// factor out main K vector and difference explicitly,
// so that dphi, the relative phase & amplitude of the alpha and beta
// rays can be calculated to high accuracy
// note: K0=k0 + r nhat, so K0.nhat = k0.nhat + r
// similarly for Kh=k0 + H + r nhat so Kh.nhat = k0.nhat + H.nhat + r
// we don't actually use the main phase (yet), so only compute real part
// of transport exponentials
// double complex phi0t=cexp((k0dotnhat+kqvals[0])*ix) #alpha transmitted wave factor
// double complex phi0r=cexp((k0dotnhat+Hdotnhat+kqvals[0])*ix) #alpha reflected factor
double phi0t=exp(creal((k0dotnhat+kqvals[0])*ix)); // alpha transmitted wave factor
double phi0r=exp(creal((k0dotnhat+Hdotnhat+kqvals[0])*ix)); // alpha reflected factor
double complex dphi=cexp((kqvals[1]-kqvals[0])*ix); // beta-alpha transmission ratio
double complex t0zz=phi0t*(i1+i2*dphi); // transmitted complex field amplitude at exit
double complex thzz=phi0r*(a1*i1+a2*i2*dphi); // reflected complex field amplitude at exit
#ifdef MCDEBUG
#ifndef OPENACC
fprintf(stderr, "LAUE: "
" k0 = (%.3f %.3f %.3f) thickness=%.3e"
" a1=(%.3f + %.3fj) "
" a2=(%.3f + %.3fj) "
" i1=(%.3f + %.3fj) "
" i2=(%.3f + %.3fj) "
" phi0t = %.3e phi0r = %.3e "
" dphi=(%.3f + %.3fj) "
" t0zz=(%.3f + %.3fj) "
" thzz=(%.3f + %.3fj) "
" \n",
k0[0], k0[1], k0[2], thickness,
creal(a1), cimag(a1),
creal(a2), cimag(a2),
creal(i1), cimag(i1),
creal(i2), cimag(i2),
phi0t, phi0r,
creal(dphi), cimag(dphi),
creal(t0zz), cimag(t0zz),
creal(thzz), cimag(thzz)
);
#endif
#endif
/* compute the asymmetry b which is the ratio of the sizes of the footprint of the beam on the crystal.
Assume it is the same for alpha and beta branches!
*/
double K0[3], Kh[3];
vplus(K0, k0, creal(kqvals[0])*nhat);
vplus(Kh, K0, H);
double b = (vdot(K0, nhat)/sqrt(vdot(K0,K0)))/(vdot(Kh, nhat)/sqrt(vdot(Kh, Kh)));
double R=cabs(thzz*thzz)/fabs(b); // the fabs(b) is the footprint correction
double T=cabs(t0zz*t0zz)/fabs(b);
if(i==0) {
*Rpi= R; *Tpi= T; *Api=phi0t*phi0t;
} else {
*Rsig=R; *Tsig=T; *Asig=phi0t*phi0t;
}
}
return 0;
}
/*This is the old Darwin function*/
void Mx_DarwinReflectivity(double *R, double *Thetah, double *Theta0, double *DeltaTheta0,
double f00, double f0h, double fp, double fpp, double V, double alpha, int h, int k, int l,
double debye_waller_B, double E, double Thetain, int pol,
int crystal_type, double fscaler, double fscalei
)
{
double lambda,theta,theta0,DeltaThetas,a,d,b,C,W,kappa,g,L;
double F0r,F0i,Fhr,Fhi,psi0r,psi0i,psihr,psihi;
lambda = 2*PI/(E2K*E); /* wavelength in Å, E in keV, using built-in constants for safety */
a = cbrt(V); /* side length of unit cubic cell (Å)*/
d = a/sqrt(h*h + k*k + l*l); /* d-spacing (Å)*/
theta = asin(lambda/(2*d)); /* kinematical bragg angle (rad) */
b = sin(theta + alpha)/sin(theta - alpha); /* asymmetry factor */
*Theta0 = Thetain - alpha; /* (rad) angle between Bragg planes and incident ray */
*Thetah = b*(*Theta0 - theta) + theta; /* (rad) Angle betweeb Bragg planes and reflected ray */
/*check if Bragg angle is less than alpha. If so return 0 reflectivity*/
if (theta<alpha) {
*R=0;
*DeltaTheta0 = -1; /*to mark it irrelevant*/
}
/* Define polarization factor: */
switch(pol){
case 0:
C = (1 + fabs(cos(2*theta)))/2; /* unpolarized */
break;
case 1:
C = fabs(cos(2*theta)); /* polarization in the scattering plane */
break;
case 2:
C = 1; /* polarization perpendicular to the scattering plane*/
break;
}
/* structure factor rules from:
https://en.wikipedia.org/wiki/Structure_factor section on diamond cubic crystals
*/
switch(crystal_type) {
case Mx_crystal_explicit:
/* use explicitly provided structure factor scale factor */
break;
case Mx_crystal_diamond: /* diamond lattice rules */
if (((h+k+l)%2) != 0){ /* (111) etc. odd sum eflection */
fscaler=fscalei=4.0;
}
else if (((h+k+l)%4)==0){ /* (400) etc. h+k+l=4n reflection */
fscaler=8; fscalei=0;
} else {
/* any other reflection is forbidden, will get a divide-by-zero somewhere, but user is
responsible for only using allowed reflections */
fscaler=0; fscalei=0;
}
break;
case Mx_crystal_fcc: /* fcc lattice rules */
{
int hpar=h%2, kpar=k%2, lpar=l%2;
if ( hpar==kpar && kpar==lpar ) { /* all parities the same */
fscaler=4.0; fscalei=0.0;
}
else { /* mixed parity forbidden */
fscaler=0; fscalei=0;
}
}
break;
case Mx_crystal_bcc: /* bcc lattice rules */
if ( ((h+k+l)%2) == 0 ) { /* h+k+l even */
fscaler=2.0; fscalei=0.0;
}
else { /* otherwise forbidden */
fscaler=0; fscalei=0;
}
break;
default:
fscaler=0; fscalei=0; /* fail later if unknown crystal type */
break;
}
F0r=8*(f00+fp);
F0i=8*fpp;
double scalemag=sqrt(fscaler*fscaler+fscalei*fscalei);
Fhr=scalemag*(f0h+fp);
Fhi=scalemag*fpp;
double main_scale=RE*lambda*lambda/(PI*V);
double M=debye_waller_B*SQR(sin(Thetain)/lambda)*(2./3.); /* temperature factor */
psi0r = F0r*main_scale;
psi0i = F0i*main_scale;
psihr = Fhr*main_scale*exp(-M); /* Eq 23*/
psihi = Fhi*main_scale*exp(-M); /* only angle-dependent part gets scaled by temp factor */
W = 0.5 * (sqrt(b) + 1/sqrt(b)) * psi0r/(C * psihr) + sqrt(b)*sin(2*theta)*(theta - *Theta0)/(C * psihr); /* eq 28*/
kappa = psihi/psihr; /* eq 22 */
g = 0.5*(sqrt(b) + 1/sqrt(b))*psi0i/(C*psihr); /* eq 21 */
L = (1/(1 + kappa*kappa))*( W*W + g*g + sqrt(SQR(W*W - g*g - 1 + kappa*kappa) + 4*SQR(g*W - kappa)));
/* *R = L - sqrt(L*L - 1); */
/* replace x-sqrt(x^2-1) with exactly equal 1/(x+sqrt(x^2-1)) to avoid roundoff when x is large ... MHM */
*R = 1/(L + sqrt(L*L - 1));
DeltaThetas = psi0r/sin(2*theta); /* eq 32 */
#ifdef MCDEBUG
#ifndef OPENACC
printf("E,lambda= %f , %f \n",E,lambda);
printf("theta= %f \n",theta*180/PI);
printf("Theta0= %f \n",*Theta0*180/PI);
printf("theta = %g rad, alpha=%g rad.\n",theta,alpha);
printf("b,sqrt(b)= %f %f\n",b,sqrt(b));
printf("1/sqrt(b)= %f \n",1/sqrt(b));
printf("Fhr, Fhi, F0r, F0i= %g %g %g %g\n",Fhr, Fhi, F0r, F0i);
printf("psihr, psihi, psi0r, psi0i= %g %g %g %g\n",psihr, psihi, psi0r, psi0i);
printf("sqrt(b)*sin(2*theta)= %g \n",sqrt(b)*sin(2*theta));
printf("C, pis0r,C * psihr= %g %g %g\n",C, psi0r,C * psihr);
printf("W= %f \n",W);
printf("kappa= %f \n",kappa);
printf("g= %f \n",g);
printf("L= %f \n",L);
printf("R= %f \n",*R);
printf("DeltaThetas %f \n",3600*DeltaThetas*180/PI);
#endif
#endif
*DeltaTheta0 = 0.5*(1 + 1/b)*DeltaThetas; /* center of reflectivity curve is at theta + DeltaTheta0 eq 31 */
}
#endif /* MX_CRYSTALS_C */
|