1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Source_div_quasi
*
* %Identification
* Written by: Mads Carlsen and Erik Bergbäck Knudsen (erkn@fysik.dtu.dk)
* Date: Apr 21
* Origin: DTU Physics
* Release: McXtrace 1.6
*
* Quasi-stochastic X-ray source with Gaussian or uniform divergence
*
* %Description
* A flat rectangular surface source with uniform or Gaussian divergence profile and focussing.
* If the parametere gauss is not set (the default) the divergence profile is flat
* in the range [-focus_ax,focus_ay]. If gauss is set, the focux_ax,focus_ay is considered
* the standard deviation of the gaussian profile.
* Currently focussing is only active for flat profile. The "focus window" is defined by focus_xw,focus_yh and dist.
* The spectral intensity profile is uniformly distributed in the energy interval defined by e0+-dE/2 or
* by wavelength lambda0+-dlambda/2
*
* The phase space sapnned by the generated X-rays is sampled by means of Halton-sequences, instead of regular
* pseudo random numbers. This ensures that samples are evenly distributed within the phase space region of interest.
*
* Example: Source_div_quasi(xwidth=0.1, yheight=0.1, focus_aw=2, focus_ah=2, E0=14, dE=2, gauss=0)
*
* %Parameters
* xwidth: [m] Width of source
* yheight: [m] Height of source
* focus_aw: [rad] Std. dev. (Gaussian) or maximal (uniform) horz. width divergence. focus_xw overrrides if it is more restrictive.
* focus_ah: [rad] Std. dev. (Gaussian) or maximal (uniform) vert. height divergence. focus_yh overrrides if it is more restrictive.
* focus_xw: [m] Width of sampling window
* focus_yh: [m] Height of sampling window
* dist: [m] Downstream distance to place sampling target window
* E0: [keV] Mean energy of X-rays.
* dE: [keV] Energy spread of X-rays.
* lambda0: [AA] Mean wavelength of X-rays (only relevant for E0=0)
* dlambda: [AA] Wavelength half spread of X-rays.
* gauss: [1] Criterion: 0: uniform, 1: Gaussian distribution of energy/wavelength
* gauss_a: [1] Criterion: 0: uniform, 1: Gaussian divergence distribution
* flux: [1/(s*cm**2*st*energy unit)] Flux per energy unit, Angs or meV
* verbose: [0/1] Generate more output on the console.
* spectrum_file: [string] File from which to read the spectral intensity profile
* phase: [rad] Set to finite value to define X-ray phase (0:2 pi)
* randomphase: [0/1] When=1, the X-ray phase is randomised
*
* %End
*******************************************************************************/
DEFINE COMPONENT Source_div_quasi
SETTING PARAMETERS (string spectrum_file="", xwidth=0, yheight=0, focus_xw=0, focus_yh=0, dist=0, focus_aw=0, focus_ah=0,
E0=0, dE=0, lambda0=0, dlambda=0, flux=0, gauss=0, gauss_a=0, randomphase=1, phase=0, int verbose=1)
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
#ifndef MX_SOURCE_DIV_QUASI_H
#define MX_SOURCE_DIV_QUASI_H 1
%include "read_table-lib"
#pragma acc routine
double _quasi_rand01(int axis, long long uid, double shift){
const int no_primes=32;
const int primes[]={2,3,5,7,11,13,17,19,23,29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,127};
double f, hn;
long long n0, n1, r;
hn = 0.0;
f = 1.0/primes[axis];
n0 = uid+1;
while ( n0>0 )
{
n1 = n0/primes[axis];
r = n0-n1*primes[axis];
hn += f*r;
f = f/primes[axis];
n0 = n1;
}
hn=modf(hn+shift,&f);
return hn;
}
#define quasi_rand01(a,b) _quasi_rand01((a),_particle->_uid,(b))
#endif /*MX_SOURCE_DIV_H*/
%}
DECLARE
%{
int ray_number;
double xmin;
double xmax;
double focus_xw_2;
double ymin;
double ymax;
double focus_yh_2;
double pmul;
double pint;
t_Table T;
int spectrum_from_file;
double shifts[32];
%}
INITIALIZE
%{
int j;
/*random shifts to avoid correlation between runs*/
for (j=0;j<32;j++){
shifts[j]=rand01();
}
ray_number=1;
/* define function for generating numbers in Halton sequences */
focus_xw_2=focus_xw/2.0;
focus_yh_2=focus_yh/2.0;
xmin=-xwidth/2.0;
ymin=-yheight/2.0;
xmax=xwidth/2.0;
ymax=yheight/2.0;
/*flag if we are using a datafile*/
spectrum_from_file=(spectrum_file && strcmp(spectrum_file,"NULL") && strlen(spectrum_file));
if (spectrum_from_file){
/*read spectrum from file*/
int status=0;
if ( (status=Table_Read(&(T),spectrum_file,0))==-1){
fprintf(stderr,"ERROR (%s): Could not parse file \"%s\"\n",NAME_CURRENT_COMP,spectrum_file?spectrum_file:"");
exit(-1);
}
/*data is now in table t*/
/*integrate to get total flux, assuming raw numbers have been corrected for measuring aperture*/
int i;
pint=0;
for (i=0;i<T.rows-1;i++){
pint+=((T.data[i*T.columns+1]+T.data[(i+1)*T.columns+1])/2.0)*(T.data[(i+1)*T.columns]-T.data[i*T.columns]);
}
if (verbose){
printf("INFO (%s): Integrated intensity radiated is %g pht/s\n",NAME_CURRENT_COMP,pint);
if(E0) printf("INFO (%s):, E0!=0 -> assuming intensity spectrum is parametrized by energy [keV]\n",NAME_CURRENT_COMP);
}
}else if (!E0 && !lambda0){
fprintf(stderr,"ERROR (%s): Error: Must specify either wavelength or energy distribution\n",NAME_CURRENT_COMP);
exit(-1);
}
/*calculate the X-ray weight from the flux*/
if (flux){
pmul=flux;
}else{
pmul=1;
}
pmul*=1.0/((double) mcget_ncount());
if( dist==0 && ( focus_xw!=0 || focus_yh!=0 )){
fprintf(stderr,"ERROR (%s): Cannot have focus sampling window (focus_xw x focus_yh) = (%g x %g) with dist=0.\n",NAME_CURRENT_COMP);
exit(-1);
}
/*check if divergence limits are compatible with focus_xw, focus_yh*/
if(focus_xw!=0){
double maxdivh=atan((xwidth+focus_xw)/dist);
if (focus_aw>maxdivh || focus_aw==0 ){
focus_aw=maxdivh;
}
}
if(focus_yh!=0){
double maxdivv=atan((yheight+focus_yh)/dist);
if (focus_ah>maxdivv || focus_ah==0 ){
focus_ah=maxdivv;
}
}
%}
TRACE
%{
double kk,theta_x,theta_y,l,e,k;
p=pmul;
if (!gauss_a){
theta_x=(quasi_rand01(0,shifts[0])-0.5)*focus_aw;
if(focus_xw!=0.0){
double x0,x1,pi_x;
x0=-focus_xw_2-dist*tan(theta_x);
x0= MAX(xmin,x0);
x1= focus_xw_2-dist*tan(theta_x);
x1= MIN(xmax,x1);
pi_x = (x1-x0)/(xwidth);
x=x0+(x1-x0)*quasi_rand01(2,shifts[2]);
p*=pi_x;
} else {
x=xmin + quasi_rand01(2,shifts[2])*xwidth;
}
theta_y=(quasi_rand01(1,shifts[1])-0.5)*focus_ah;
if(focus_yh!=0.0){
double y0,y1,pi_y;
y0=-focus_yh_2-dist*tan(theta_y);
y0= MAX(ymin,y0);
y1= focus_yh_2-dist*tan(theta_y);
y1= MIN(ymax,y1);
pi_y = (y1-y0)/(yheight);
y=y0+(y1-y0)*quasi_rand01(3,shifts[3]);
p*=pi_y;
} else {
y=ymin + quasi_rand01(3,shifts[3])*yheight;
}
} else {
theta_x=randnorm()*focus_aw;
theta_y=randnorm()*focus_ah;
x=xmin+rand01()*xwidth;
y=ymin+rand01()*yheight;
}
if (spectrum_from_file){
double pp=0;
while (pp<=0){
l=T.data[0]+ (T.data[(T.rows-1)*T.columns] -T.data[0])*quasi_rand01(4,shifts[4]);
pp=Table_Value(T,l,1);
}
p*=pp;
/*if E0!=0 the tabled value is assumed to be energy in keV*/
if (E0!=0){
k=E2K*l;
}else{
k=(2*M_PI/l);
}
}else if (E0){
if(!dE){
e=E0;
}else if (gauss){
e=E0+dE*randnorm();
}else{
e=randpm1()*dE + E0;
}
k=E2K*e;
}else if (lambda0){
if (!dlambda){
l=lambda0;
}else if (gauss){
l=lambda0+dlambda*randnorm();
}else{
l=randpm1()*dlambda + lambda0;
}
k=(2*M_PI/l);
}
kx=tan(theta_x);
ky=tan(theta_y);
kz=1;
NORM(kx,ky,kz);
kx*=k;
ky*=k;
kz*=k;
/*set polarization and phase to something known*/
Ex=0;Ey=0;Ez=0;
if (!randomphase){
phi=phase;
}else{
phi=rand01()*M_2_PI;
}
/*set polarization vector*/
Ex=0;Ey=0;Ez=0;
%}
MCDISPLAY
%{
magnify("xy");
multiline(5, -xwidth/2.0, -yheight/2.0, 0.0,
xwidth/2.0, -yheight/2.0, 0.0,
xwidth/2.0, yheight/2.0, 0.0,
-xwidth/2.0, yheight/2.0, 0.0,
-xwidth/2.0, -yheight/2.0, 0.0);
if (focus_xw || focus_yh) {
dashed_line(0,0,0, -focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2,-focus_yh/2,dist, 4);
dashed_line(0,0,0, focus_xw/2, focus_yh/2,dist, 4);
dashed_line(0,0,0, -focus_xw/2, focus_yh/2,dist, 4);
}else{
dashed_line(0,0,0, tan(-focus_ah/2.0)*dist*0.1, tan(-focus_aw/2.0)*dist*0.1,dist*0.1,4);
dashed_line(0,0,0, tan(focus_ah/2.0)*dist*0.1, tan(-focus_aw/2.0)*dist*0.1,dist*0.1,4);
dashed_line(0,0,0, tan(focus_ah/2.0)*dist*0.1, tan(focus_aw/2.0)*dist*0.1,dist*0.1,4);
dashed_line(0,0,0, tan(-focus_ah/2.0)*dist*0.1, tan(focus_aw/2.0)*dist*0.1,dist*0.1,4);
}
%}
END
|