1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/*******************************************************************************
*
* McXtrace, X-ray tracing package
* Copyright, All rights reserved
* DTU Physics, Kgs. Lyngby, Denmark
* Synchrotron SOLEIL, Saint-Aubin, France
*
* Component: Source_lab
*
* %Identification
* Written by: Erik Bergbaeck Knudsen
* Date: May 2012
* Version: 1.0
* Origin: Kgs. Lyngby
*
* Laboratory x-ray source.
*
* %Description
* Model of a laboratory x-ray tube, generating x-rays by bombarding a target by electrons.
* Given a input energy E0 of the electron beam, x-rays are emitted from the accessible emission lines
* The geometry of the tube is assumed to be:
* # The electron beam hits a slab of surface material surface at a right angle illuminating an area of width by height,
* # where width is measured along the component X-axis.
* # The centre of the electron beam at the anode surface is the origin of the component.
* # The Z-axis of the component points at the centre of the exit window (focus_xw by focus yh)
* placed at a distance dist from the origin.
* # The angle between the Z-axis and the anode surface is the take_off angle.
* For a detailed sketch of the geometry see the componnent manual.
*
* The Bremsstrahlung emitted is modelled using the model of Kramer (1923) as restated in International
* Tables of Crystallography C 4.1
* Characteristic radiation is modelled by Lorentzian (default) or Gaussian energy profiles with
* line-energies from Bearden (1967), widths from Krause (1979) and intensity from Honkimäki (1990) and x-ray data booklet.
* Absoprtion of emitted x-rays while travelling through the target anode is included.
*
* Example: Source_lab(material_datafile="Cu.txt",Emin=1, E0=80)
*
* %Parameters
* width: [m] Width of electron beam impinging on the anode.
* height: [m] Height of electron beam impinging on the anode.
* xwidth: [m] Width of the anode material slab.
* yheight: [m] Height of the anode material slab.
* thickness: [m] Thickness of the anode material slab.
* take_off: [deg] Take off angle of beam centre.
* dist: [m] Distance between centre of illuminated target and exit window.
* E0: [kV] Acceleration voltage of xray tube.
* tube_current: [A] Electron beam current.
* Emax: [keV] Maximum energy to sample. Default (Emax=0) is to set it to E0.
* Emin: [keV] Minimum energy to sample.
* focus_xw: [m] Width of exit window.
* focus_yh: [m] Height of exit window.
* frac: [0-1] Fraction of statistic to use for Bremsstrahlung.
* material_datafile: [string] Name of datafile which describes the target material.
* lorentzian: [0/1] If nonzero Lorentzian (more correct) line profiles are used.
* exit_window_refpt: [m] If set, the AT position and exit window will coincide (legacy behaviour).
*
* %End
*************************************************************************/
DEFINE COMPONENT Source_lab
SETTING PARAMETERS (string material_datafile="Cu.txt", width=1e-3, height=1e-3, thickness=100e-6, E0=20, Emax=0, Emin=1, focus_xw=5e-3, focus_yh=5e-3,
take_off=6, dist=1, tube_current=1e-3, frac=0.1, lorentzian=1, xwidth=0, yheight=0, exit_window_refpt=0 )
/* X-ray parameters: (x,y,z,kx,ky,kz,phi,t,Ex,Ey,Ez,p) */
SHARE
%{
%include "read_table-lib"
#ifndef MX_SOURCE_LAB
#define MX_SOURCE_LAB
/*here are some material data- currently only for Cu, Mo, W, and Ag*/
struct xray_em_data{
int _Z;/*atom number*/
double Ek;/*ionazation energy*/
double w_k;/*flourescence yield*/
int linec;
double e[6];/*line energy*/
double w[6];/*natural width of line FWHM*/
double i[6];/*relative intensity*/
};
struct xray_em_data xray_mat_data[8]={
{24, 5.989 ,0.265, 3, {5.41472,5.40551,5.94671,0,0,0}, {1.97e-3,2.39e-3,3.05e-3,0,0,0}, {100,50,15,0,0,0}},
{27, 7.709 ,0.391, 3, {6.93032,6.9153,7.6494,0,0,0}, {2.26e-3,3.08e-3,4.36e-3,0,0,0}, {100,51,17,0,0,0}},
{29, 8.979 ,0.407,2,{8.02783,8.04778,0,0,0,0},{2.11e-3,2.17e-3,0,0,0,0},{0.51,1.0,0,0,0,0}},
{31, 10.367,0.0 ,2,{9.22482,9.25174,0,0,0,0},{2.59e-3,2.66e-3,0,0,0,0},{0.51,1.0,0,0,0,0}},
{42, 20.00 ,0.770,5,{17.3743,17.47934,19.5903, 19.6083, 19.965,0},{6.31e-3,6.49e-3,12e-3, 12e-3, 12e-3,0},{0.52,1.0,0.08,0.15,0.03,0}},
{47, 25.52, 0.8,2,{21.99030,22.162917, 0,0,0,0},{9.32e-3,9.16e-3,0,0,0,0}, {0.53, 1, 0,0,0,0}}, /* Ag fluorscence yield just guessed */
{74, 69.525,0.945,5,{57.9817,59.31824,66.9514,67.2443,69.067,0},{44.9e-3,45.2e-3, 51.1e-3, 50.8e-3 , 50.2,0},{0.58,1.0,0.11,0.22,0.08,0}},
{0,0.0,0.0,0,{0,0,0,0,0,0},{0,0,0,0,0,0},{0,0,0,0,0,0}}
};
#pragma acc declare create(xray_mat_data)
#endif
%}
DECLARE
%{
Rotation R_xray_gen;
Rotation R_xray_geni;
Coords O_xray_gen;
int Z;
double At;
double rho;
t_Table T;
int em_idx;
double Icont;
double Ichar;
int linemin;
int linemax;
double p_continous;
double pmul_c;
double mu_electron;
double BKRAMER;
%}
INITIALIZE
%{
BKRAMER=2e-6; /*photons /keV /electron*/
#pragma acc update device(xray_mat_data[0:6])
int status,ii;
if (E0<=0){
fprintf(stderr,"Error %s: Impinging electron energy (E0) must be >0, was %g\n",NAME_CURRENT_COMP, E0);
exit(-1);
}
if (!Emax){/*if Emax is not set use the impinging electron energy*/
Emax=E0;
}
if(Emin<=0){
fprintf(stderr,"Error (%s): Emin must be > 0 (%g)\n",NAME_CURRENT_COMP,Emin);exit(-1);
}
if(Emax<Emin){
fprintf(stderr,"Error (%s): Nonsensical emission energy interval [Emin,Emax]=[%g %g] at E0=%g\n",NAME_CURRENT_COMP,Emin,Emax,E0);
exit(-1);
}
if ( (status=Table_Read(&(T),material_datafile,0))==-1){
fprintf(stderr,"Error %s: Could not parse file \"%s\"\n",NAME_CURRENT_COMP,material_datafile?material_datafile:"");
exit(-1);
}
char **header_parsed;
header_parsed=Table_ParseHeader(T.header,"Z","A[r]","rho","Z/A","sigma[a]",NULL);
if(header_parsed[2]){rho=strtod(header_parsed[2],NULL);}
if(header_parsed[0]){Z=strtod(header_parsed[0],NULL);}
if(header_parsed[1]){At=strtod(header_parsed[1],NULL);}
/*use the atom number to get at the right data structure*/
int idx=0;
while (Z!=xray_mat_data[idx]._Z){
idx++;
if ((xray_mat_data[idx]._Z)==0){
fprintf(stderr,"Error: %s (Z=%d) anode not implemented yet. Please contact the McXtrace team to fix this. Aborting.\n",material_datafile,Z);
exit(-1);
}
}
em_idx=idx;
struct xray_em_data *em_p = &(xray_mat_data[em_idx]);
/*Integrate the continuous spectrum and the characteristic so as to get the relative intenisities right*/
Icont=tube_current/CELE*BKRAMER*Z*(E0*log(Emax)-E0*log(Emin) - Emax + Emin);
/*check if E0 >Ek. If not, no characteristic emission can take place*/
if (E0>em_p->Ek){
double Bk=1.2e-5*pow(em_p->Ek,1.67)*exp(-0.077*Z);
Ichar=tube_current/CELE*4*M_PI*(E0/em_p->Ek-1)*Bk;
double Ichar_tot=0;
int linec=0;
linemin=0;
linemax=em_p->linec;
for (ii=0;ii<em_p->linec;ii++){
/*if the interval [Emin,Emax] contains 5 sigma of the characteristic peak - use full peak.*/
if (Emin>em_p->e[ii]+5*em_p->w[ii] ){
/*way below of energy limit - do not use.*/
linemin=ii;
}else if ( Emax<em_p->e[ii]-5*em_p->w[ii]){
/*way above of energy limit - do not use.*/
linemax= linemax<ii?linemax:ii;
}else{
linec++;
}
if(Emax>em_p->e[ii]+5*em_p->w[ii] && Emin<em_p->e[ii]-5*em_p->w[ii]){
Ichar_tot+=em_p->i[ii];
}else{
if(!lorentzian){
/*We only partially use the peak - so update the relative intensity to reflect that*/
Ichar_tot+=em_p->i[ii]*0.5*( erf(Emax-em_p->e[ii]/em_p->w[ii]/M_SQRT2) - erf( Emin-em_p->e[ii]/em_p->w[ii]/M_SQRT2) );
em_p->i[ii]= em_p->i[ii]*0.5*( erf((Emax-em_p->e[ii]/M_SQRT2)/em_p->w[ii]/M_SQRT2) - erf((Emin-em_p->e[ii])/em_p->w[ii]/M_SQRT2) );
}else{
/* 1/pi atan(2x/w)) is integrated lorentzian of fwhm w, MHM, April 2015 */
Ichar_tot+=em_p->i[ii]*(1.0/M_PI)*( atan(2*(Emax-em_p->e[ii])/em_p->w[ii]) - atan(2*(Emin-em_p->e[ii])/em_p->w[ii]) );
}
}
}
p_continous=Icont/(Ichar*Ichar_tot+Icont);
}else{
/*characteristic K-emission is not possible*/
p_continous=1;
frac=1;
}
O_xray_gen=coords_set(0,0,0);
rot_set_rotation(R_xray_gen,-take_off*DEG2RAD,0,0);
rot_set_rotation(R_xray_geni,take_off*DEG2RAD,0,0);
pmul_c=1.0/(mcget_ncount());
mu_electron=0;
%}
TRACE
%{
double x1,y1,z1,x2,y2,z2,r,e,k,pdir,pmul;
/* pick a point in the generating volume*/
x1=rand01()*width-width/2.0;
z1=rand01()*height-height/2.0;
/* y is the absorption depth of the electron getting converted to an xray*/
y1=log(rand01())*mu_electron;
double px,py,pz;
Coords P;
/* transform initial coords to ones in a frame with origin at the center of e-beam with optical axis pointing towards exit window*/
P=coords_set(x1,y1,z1);
P=coords_add(rot_apply(R_xray_gen,P),O_xray_gen);
coords_get(P,&x,&y,&z);
/*randvec_target_rect_real computes a target point and a solid angle correction factor, hence the k-vector has to be computed from
generation point and target point. The (0,0,1) location of the target is due to a silent assumption in randvec() that
the target cannot be situated in the origin.*/
randvec_target_rect_real(&px,&py,&pz,&pdir,0,0,dist,focus_xw,focus_yh, R_xray_gen,x1,y1,z1,2);
/*k is parallell to the line between generation and target points*/
kx=px-x1;
ky=py-y1;
kz=pz-z1;
/*Now for wavelength selection*/
r=rand01();
if(r<frac){
/*bremsstrahlung*/
e=rand01()*(Emax-Emin)+Emin;
k=e*E2K;
pmul=tube_current/CELE*BKRAMER*Z*(E0/e-1);
/*correct for not having the full E-window*/
pmul*=(Emax-Emin)/E0;
/*correct for monte-carlo statistics*/
pmul*=p_continous/frac;
}else{
struct xray_em_data *pt=&(xray_mat_data[em_idx]);
/*characteristic radiation*/
/*first pick a possible line*/
r=rand01()*(linemax-linemin) + linemin;
int lineno=(int)floor(r);
if (lineno==pt->linec) {
lineno--;/*we might get overflow*/
}
if(!lorentzian){
pmul=pt->i[lineno]*Ichar;
e=(randnorm()*pt->w[lineno]+pt->e[lineno]);
/*this can be very inefficient*/
while (e<Emin || e>Emax){
e=(randnorm()*pt->w[lineno]+pt->e[lineno]);
}
}else{/* tan((rand-0.5)/pi) is Lorentzian with FWHM of 2, MHM April 2015 */
/* compute upper and lower random range to map onto energy bounds such that a*tan(u)+b = energy. Note -0.5<u<0.5 */
double umin=atan(2*(Emin-pt->e[lineno])/pt->w[lineno])/M_PI;
double umax=atan(2*(Emax-pt->e[lineno])/pt->w[lineno])/M_PI;
pmul=pt->i[lineno]*Ichar*(umax-umin); /* weight intensity for partial line strength */
e=tan(((umax-umin)*rand01()+umin)*M_PI)*pt->w[lineno]/2+pt->e[lineno];
}
k=E2K*e;
pmul*=(1-p_continous)/frac;
}
/*scale k accordingly*/
NORM(kx,ky,kz);
kx*=k;ky*=k;kz*=k;
/*set the x-ray weight to whatever we computed just before and correct for only sampling the exit window, and correct for number of issued photons*/
p=pmul*pmul_c;
int ie;
/*Correct for absorption*/
double mu_abs,l0,l1,lx,ly,lz,klx,kly,klz,xw,yh;
l0=0;l1=0;
/*if dimensions are set the anode has a limited size - otherwise use a
practically infinite slab*/
if(!xwidth) xw=FLT_MAX;
if(!yheight) yh=FLT_MAX;
coords_get(rot_apply(R_xray_geni,coords_set(x,y,z)),&lx,&ly,&lz);
coords_get(rot_apply(R_xray_geni,coords_set(kx,ky,kz)),&klx,&kly,&klz);
/*find path length inside anode material*/
ie=box_intersect(&l0,&l1,lx,ly+thickness/2.0,lz,klz,kly,klz,xw,thickness,yh);
if(!ie || l0>0){
/*photon is somehow outside the anode - this should not happen*/
ABSORB;
}
mu_abs=Table_Value(T, k*K2E, 5)*rho*1e2; /*mu_abs in m^-1*/
p*=exp(-l1*mu_abs);
/*set a random phase*/
phi=rand01()*2*M_PI;
/*Finally, if exit_window_refpt is set revert to legacy behaviour where the centre of the exit window is the
reference point of the component*/
if(exit_window_refpt){
z=z-dist;
}
/*set a scatter pt at the generation pt*/
SCATTER;
%}
MCDISPLAY
%{
_class_particle p1,p2;
double x1,y1,z1,x2,y2,z2,width_2,height_2;
double dx,dy,dz;
/*these are just dummies*/
double d1,d2,d3,d4,d5,d6;
width_2=width/2.0;
height_2=height/2.0;
p1.x=-width_2;p1.y=0;p1.z=-height_2;
p2.x=-width_2;p2.y=0;p2.z= height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p1.x,p1.y,p1.z,p2.x,p2.y,p2.z);
p1.x=width_2;p1.y=0;p1.z=height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
p2.x=width_2;p2.y=0;p2.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p1.x,p1.y,p1.z,p2.x,p2.y,p2.z);
p1.x=-width_2;p1.y=0;p1.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
/*this is the mean penetration depth of electron that get converted to x-rays*/
p1.x=-width_2;p1.y=-mu_electron;p1.z=-height_2;
p2.x=-width_2;p2.y=-mu_electron;p2.z= height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
dashed_line(p1.x,p1.y,p1.z,p2.x,p2.y,p2.z,5);
p1.x=width_2;p1.y=-mu_electron;p1.z=height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
dashed_line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z,5);
p2.x= width_2;p2.y=-mu_electron;p2.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p2);
dashed_line(p1.x,p1.y,p1.z,p2.x,p2.y,p2.z,5);
p1.x=-width_2;p1.y=-mu_electron;p1.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
dashed_line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z,5);
p1.x=-width_2;p1.y=-mu_electron;p1.z=-height_2;
p2.x=-width_2;p2.y=0;p2.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
p1.x=width_2;p1.y=-mu_electron;p1.z=-height_2;
p2.x=width_2;p2.y=0;p2.z=-height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
p1.x=-width_2;p1.y=-mu_electron;p1.z=height_2;
p2.x=-width_2;p2.y=0;p2.z=height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
p1.x=width_2;p1.y=-mu_electron;p1.z=height_2;
p2.x=width_2;p2.y=0;p2.z=height_2;
mccoordschange(O_xray_gen,R_xray_gen,&p1);
mccoordschange(O_xray_gen,R_xray_gen,&p2);
line(p2.x,p2.y,p2.z,p1.x,p1.y,p1.z);
/*now draw "exit" window*/
rectangle("xy",0,0,0,focus_xw,focus_yh);
%}
END
|