File: Source_simplex.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (201 lines) | stat: -rw-r--r-- 5,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/************************************************************************
* 
* McXtrace, X-ray tracing package
*         Copyright, All rights reserved
*         DTU Physics, Kgs. Lyngby, Denmark
*         Synchrotron SOLEIL, Saint-Aubin, France
*
*
* Component: Source_genesis
*
* %Identification
* Written by: Erik B Knudsen
* Date: Aug. 10th, 2014
* Origin: Risoe
* Release: McXtrace 1.2
*
* Interface source for importing Simplex generated X-ray pulses into McXtrace
* 
* %Description
* This source model reads the dumped radiation field output from Simplex and samples it to be used
* in McXtrace.
* 
* %Parameters
* focus_xw:   [m]   Width of target.
* focus_yh:   [m]   Height of target.
* dist:       [m]   Distance to target along z axis.
* E0:         [keV] Mean energy of xrays.
* dE:         [keV] Energy half spread of x-rays.
* fname:      [string] Filename of main output file of GENESIS 1.3.
* meshsize:   [m]   Spacing between mesh points (equal in x and y).
* gridpoints: [int] Number of mesh points along 1 axis.
* s0:         [m]   Back end of pulse time sampling windows scaled by c^-1. 
* s1:         [m]   Front end of pulse time sampling window scaled by c^-1.
* focus_a:    [rad] Mean divergence angle.
* nslices:    [1]   Number of slices simulated.
* flux:       [1]   Flux-multiplier.
*
* %Link
* Tanaka, Journal of Synchrotron Radiation 22, 1319 (2015) http://journals.iucr.org/s/issues/2015/05/00/gb5029/
* http://radiant.harima.riken.go.jp/simplex/
* 
* %End
*****************************************************************************/

DEFINE COMPONENT Source_simplex
SETTING PARAMETERS (int gridpoints=101, string fname="template.fld",focus_xw=0,focus_yh=0,dist=1,E0=0, dE=0, 
    meshsize=1e-5, int nslices=102, s0=-2e-3,s1=2e-3,flux=1.0, focus_a=0.1)

SHARE
%{
  %include "read_table-lib"
  #include <complex.h>
  struct Ssimplex_struct {
    double l0,dl;
    double s0,s1;
    double pmul,pint;
    t_Table T;
    double complex **dfl;
  };
%}


DECLARE
%{
  double e;
  struct Ssimplex_struct prms;
%}

INITIALIZE
%{

  /*open the main output file and parse for parameters*/
  /*skip this for now*/

  char dflfn[512];
  FILE *dflfp;
  int k;
  int l;
  int m;
  float *r;
  float *i;

  r=malloc(gridpoints*sizeof(float));
  i=malloc(gridpoints*sizeof(float));

  strncpy(dflfn,fname,502);
  strncat(dflfn,".fld",4);
  /*allocate storage for the input array*/
  if( (prms.dfl=calloc(nslices,sizeof(double complex *)))==NULL){
    fprintf(stderr,"Error(%s): allocation failed for slice array. Aborting.\n",NAME_CURRENT_COMP);
    exit(-1);
  }
  if( (dflfp=Open_File(dflfn,"r", NULL))==NULL){
    fprintf(stderr,"Error(%s): cannot open file %s for reading- Aborting.\n",NAME_CURRENT_COMP,dflfn);
    exit(-1);
  }

  for (k=0;k<nslices;k++){
    /*printf("alloc'ing for slice %d...",k);*/
    if( (prms.dfl[k]=calloc(gridpoints*gridpoints,sizeof(double complex)))==NULL) { 
      fprintf(stderr,"Error(%s): allocation failed for slice %d. Aborting.\n",NAME_CURRENT_COMP,k);
      exit(-1);
    }
    /*printf("done\n");*/
    /*so read the data*/
    /*printf("reading for slice %d...",k);*/
    for (l=0;l<gridpoints;l++){
      int s=0;
      for (m=0;m<gridpoints;m++){
        s+=fread(r+m,sizeof(float),1,dflfp);
        s+=fread(i+m,sizeof(float),1,dflfp);
      }
      if(s!=2*gridpoints){
        fprintf(stderr,"Error(%s): input data not read cleanly (slice %d, row %d)\n",NAME_CURRENT_COMP,k,l);
      }
      for (m=0;m<gridpoints;m++){
        prms.dfl[k][l*gridpoints+m]=r[m]+I*i[m];
      }
    }
    /*printf("done\n");*/
  }
  free(r);
  free(i);
  prms.pmul=flux/(double)mcget_ncount();
%}

TRACE
%{
  double xwidth,yheight,k;
  double theta_x,theta_y;
  double alpha,beta;
  double complex cp,cp2,t0,t1;
  int ix,iy,is;
  double ds,s,deltas;

  xwidth=(gridpoints-1)*meshsize;
  yheight=(gridpoints-1)*meshsize;
  /*sample x and y from gridsize*/
  x=(rand01()-0.5)*xwidth;
  y=(rand01()-0.5)*yheight;
  ix=(int)((x+0.5*xwidth)/meshsize);
  if(ix==gridpoints) ix--;
  iy=(int)((y+0.5*yheight)/meshsize);
  if(iy==gridpoints) iy--;

  /*sample s inbetween s and s0 and s1*/
  s=rand01()*(s1-s0);
  
  deltas=(s1-s0)/(nslices-1);
  /*which slice is closest*/
  is=(int)(s/deltas+0.5);
  if(is==nslices) is--;
  t=(s+s0)/M_C;


  alpha=( (x+0.5*xwidth - ix*meshsize) /meshsize );
  beta= ( (y+0.5*yheight - iy*meshsize) /meshsize );

  t0=(1-alpha)*prms.dfl[is][iy*gridpoints+ix] + alpha*prms.dfl[is][iy*gridpoints+ix+1];
  t1=(1-alpha)*prms.dfl[is][(iy+1)*gridpoints+ix] + alpha*prms.dfl[is][(iy+1)*gridpoints+ix+1];
  
  cp = (1-beta)*t0+beta*t1;
  /*cp now contains the complex radiation field at x,y*/

  p=prms.pmul*cabs(cp);
  phi=carg(cp);

  theta_x=(randnorm())*focus_a;
  theta_y=(randnorm())*focus_a;
  
  /*draw random coordinates in the acceptance window*/
  kx=tan(theta_x);
  ky=tan(theta_y);
  kz=1;
  NORM(kx,ky,kz);

  k=E0*E2K;
  kx*=k;
  ky*=k;
  kz*=k;

  /*set polarization vector*/
  Ex=0;Ey=0;Ez=0;

%}

FINALLY
%{
  Table_Free(&(prms.T));
%}

MCDISPLAY
%{
  double radius=0.05;
  
  circle("xy",0,0,0,radius);
  circle("xz",0,0,0,radius);
  circle("yz",0,0,0,radius);
%}

END