1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
#!/usr/bin/env python3
''' Small script to rewrite McStas trace output to python matplotlib for plotting '''
import matplotlib as mpl
from mpl_toolkits.mplot3d import art3d
from matplotlib import pyplot as plt
import numpy as np
import json
from util import (parse_multiline, rotate, rotate_points, draw_circle, get_line,
draw_box, draw_sphere, draw_cylinder, draw_disc, rotate_xyz, draw_cone, draw_hollow_box, draw_annulus, draw_new_circle)
UC_COMP = 'COMPONENT:'
MC_COMP = 'MCDISPLAY: component'
MC_COMP_SHORT = 'COMP: '
MC_LINE = 'MCDISPLAY: multiline'
MC_CIRCLE = 'MCDISPLAY: circle'
MC_NEW_CIRCLE = 'MCDISPLAY: new_circle'
MC_DISC = 'MCDISPLAY: disc'
MC_ANNULUS = 'MCDISPLAY: annulus'
MC_CYLINDER = 'MCDISPLAY: cylinder'
MC_SPHERE = 'MCDISPLAY: sphere'
MC_BOX = 'MCDISPLAY: box'
MC_CONE = 'MCDISPLAY: cone'
MC_POLYGON = 'MCDISPLAY: polyhedron'
MC_ENTER = 'ENTER:'
MC_LEAVE = 'LEAVE:'
MC_STATE = 'STATE:'
MC_SCATTER = 'SCATTER:'
MC_ABSORB = 'ABSORB:'
MC_MAGNIFY = 'MCDISPLAY: magnify'
MC_START = 'MCDISPLAY: start'
MC_END = 'MCDISPLAY: end'
MC_STOP = 'INSTRUMENT END:'
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow']
#transparency will be a user controlled parameter eventually
transparency = 1
#for setting axis limits when using polygon
x_max_polygon = y_max_polygon = z_max_polygon = float('-inf')
x_min_polygon = y_min_polygon = z_min_polygon = float('inf')
def parse_trace():
''' Parse McStas trace output from stdin and write results
to file objects csv_comps and csv_lines '''
mpl.rcParams['legend.fontsize'] = 10
ax = plt.figure(figsize=plt.figaspect(0.5) * 1.5).add_subplot(projection='3d')
ax.set(xlabel='z', ylabel='x', zlabel='y')
try:
ax.set_aspect('equal')
except:
print("manual aspect not supported")
color = 0
# map from component name to (position, rotation matrix)
comps = {}
# active (position, rotation matrix)
comp = (np.array([0, 0, 0]),
np.array([1, 0, 0,
0, 1, 0,
0, 0, 1]).reshape(3, 3))
# previous neutron position
prev = None
skip = False
# we are drawing a neutron
active = False
xstate, ystate, zstate = [], [], []
while True:
# read line
line = get_line()
if not line:
break
# register components
if line.startswith(UC_COMP):
# grab info line
info = get_line()
assert info[:4] == 'POS:'
nums = [x.strip() for x in info[4:].split(',')]
# extract fields
name = line[len(UC_COMP):].strip(' "\n')
pos = np.array([float(x) for x in nums[:3]])
# read flat 3x3 rotation matrix
rot = np.array([float(x) for x in nums[3:3 + 9]]).reshape(3, 3)
comps[name] = (pos, rot)
# switch perspective
elif line.startswith(MC_COMP):
color = (color + 1) % len(COLORS)
comp = comps[line[len(MC_COMP) + 1:]]
elif line.startswith(MC_COMP_SHORT):
name = line[len(MC_COMP_SHORT) + 1:].strip('"')
comp = comps[name]
skip = True
#process primitives
elif line.startswith(MC_LINE):
process_multiline(ax, line, COLORS[color], comp, transparency)
elif line.startswith(MC_POLYGON):
process_polygon(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_CIRCLE):
process_circle(ax, line, COLORS[color], comp, transparency)
elif line.startswith(MC_DISC):
process_disc(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_ANNULUS):
process_annulus(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_NEW_CIRCLE):
process_new_circle(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_CONE):
process_cone(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_SPHERE):
process_sphere(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_BOX):
process_box(ax, line, comp, COLORS[color], transparency)
elif line.startswith(MC_CYLINDER):
process_cylinder(ax, line, comp, COLORS[color], transparency)
# activate neutron when it enters
elif line.startswith(MC_ENTER):
prev = None
skip = True
active = True
xstate, ystate, zstate = [], [], []
# deactivate neutron when it leaves
elif line.startswith(MC_LEAVE):
ax.plot(zstate, xstate, ystate)
active = False
prev = None
elif line.startswith(MC_ABSORB):
pass
# register state and scatter
elif line.startswith(MC_STATE) or line.startswith(MC_SCATTER):
if not active:
continue
if skip:
skip = False
continue
register_state_and_scatter(comp, line, prev, xstate, ystate, zstate)
# kick out legacy "junk"
elif line.startswith(MC_MAGNIFY) or line.startswith(MC_START) or line.startswith(MC_END) or line.startswith(
MC_STOP):
continue
else:
print(line)
set_axis_limits(ax)
plt.show()
def process_circle(ax, line, color, comp, transparency):
items = line[len(MC_CIRCLE):].strip('()').split(',')
xyz = 'xyz'
# plane
pla = [xyz.find(a) for a in items[0].strip("''")]
# center and radius
pos = [float(x) for x in items[1:4]]
rad = float(items[4])
(x, y, z) = draw_circle(pla, pos, rad, comp)
ax.plot(z, x, y, color=color, alpha=transparency)
def process_multiline(ax, line, color, comp, transparency):
points = parse_multiline(line[len(MC_LINE):].strip('()'))
(x, y, z) = rotate_points(points, comp)
ax.plot(z, x, y, color=color, alpha=transparency)
def process_sphere(ax, line, comp, color, transparency):
items = line[len(MC_SPHERE):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
radius = float(items[3])
(x, y, z) = draw_sphere(center, radius)
(x, y, z) = rotate_xyz(x, y, z, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_cylinder(ax, line, comp, color, transparency):
items = line[len(MC_CYLINDER):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
radius = float(items[3])
height = float(items[4])
thickness = float(items[5])
axis_vector = [float(x) for x in items[6:9]]
(x, y, z) = draw_cylinder(center, radius, height, axis_vector)
(x, y, z) = rotate_xyz(x, y, z, comp)
axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)
# Calculate half of the height vector
half_height_vector = (height / 2) * axis_vector_normalized
# Calculate the centers for the upper and lower lid
center_upper_lid = center + half_height_vector
center_lower_lid = center - half_height_vector
if thickness == 0:
(x_upper_lid, y_upper_lid, z_upper_lid) = draw_disc(center_upper_lid, radius, axis_vector)
(x_lower_lid, y_lower_lid, z_lower_lid) = draw_disc(center_lower_lid, radius, axis_vector)
(x_cylinder_upper_lid, y_upper_lid, z_upper_lid) = rotate_xyz(x_upper_lid, y_upper_lid, z_upper_lid, comp)
(x_lower_lid, y_lower_lid, z_lower_lid) = rotate_xyz(x_lower_lid, y_lower_lid, z_lower_lid, comp)
ax.plot_surface(z_upper_lid, x_upper_lid, y_upper_lid, color=color, alpha=transparency)
ax.plot_surface(z_lower_lid, x_lower_lid, y_lower_lid, color=color, alpha=transparency)
if thickness > 0:
(x_inner, y_inner, z_inner) = draw_cylinder(center, radius - thickness, height, axis_vector)
(x_inner, y_inner, z_inner) = rotate_xyz(x_inner, y_inner, z_inner, comp)
ax.plot_surface(z_inner, x_inner, y_inner, color=color, alpha=transparency)
(x_upper_lid, y_upper_lid, z_upper_lid) = draw_annulus(center_upper_lid, radius, radius - thickness,
axis_vector)
(x_lower_lid, y_lower_lid, z_lower_lid) = draw_annulus(center_lower_lid, radius, radius - thickness,
axis_vector)
(x_upper_lid, y_upper_lid, z_upper_lid) = rotate_xyz(x_upper_lid, y_upper_lid, z_upper_lid, comp)
(x_lower_lid, y_lower_lid, z_lower_lid) = rotate_xyz(x_lower_lid, y_lower_lid, z_lower_lid, comp)
ax.plot_surface(z_upper_lid, x_upper_lid, y_upper_lid, color=color, alpha=transparency)
ax.plot_surface(z_lower_lid, x_lower_lid, y_lower_lid, color=color, alpha=transparency)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_disc(ax, line, comp, color, transparency):
items = line[len(MC_DISC):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
radius = float(items[3])
axis_vector = [float(x) for x in items[4:7]]
(x, y, z) = draw_disc(center, radius, axis_vector)
(x, y, z) = rotate_xyz(x, y, z, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_new_circle(ax, line, comp, color, transparency):
items = line[len(MC_NEW_CIRCLE):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
radius = float(items[3])
axis_vector = [float(x) for x in items[4:7]]
(x, y, z) = draw_new_circle(center, radius, axis_vector)
(x, y, z) = rotate_xyz(x, y, z, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_annulus(ax, line, comp, color, transparency):
items = line[len(MC_ANNULUS):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
outer_radius = float(items[3])
inner_radius = float(items[4])
axis_vector = [float(x) for x in items[5:8]]
(x, y, z) = draw_annulus(center, outer_radius, inner_radius, axis_vector)
(x, y, z) = rotate_xyz(x, y, z, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_cone(ax, line, comp, color, transparency):
items = line[len(MC_CONE):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
radius = float(items[3])
height = float(items[4])
axis_vector = [float(x) for x in items[5:8]]
(x, y, z) = draw_cone(center, radius, height, axis_vector)
(x, y, z) = rotate_xyz(x, y, z, comp)
axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)
# Calculate half of the height vector
half_height_vector = (height / 2) * axis_vector_normalized
# Calculate the center for the lid
center_lid = center - half_height_vector
(x_lid, y_lid, z_lid) = draw_disc(center_lid, radius, axis_vector)
(x_lid, y_lid, z_lid) = rotate_xyz(x_lid, y_lid, z_lid, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
ax.plot_surface(z_lid, x_lid, y_lid, color=color, alpha=transparency)
def process_box(ax, line, comp, color, transparency):
items = line[len(MC_BOX):].strip('()').split(',')
center = [float(x) for x in items[0:3]]
a = float(items[3])
b = float(items[4])
c = float(items[5])
thickness = float(items[6])
if thickness > 0:
faces, vertices = draw_hollow_box(center, a, b, c, thickness)
rotated_vertices = rotate_polygon(vertices, comp)
show_polygon(ax, color, transparency, faces, rotated_vertices)
else:
(x, y, z) = draw_box(center, a, b, c)
(x, y, z) = rotate_xyz(x, y, z, comp)
ax.plot_surface(z, x, y, color=color, alpha=transparency)
def process_polygon(ax, line, comp, color, transparency):
global x_min_polygon, x_max_polygon, y_min_polygon, y_max_polygon, z_min_polygon, z_max_polygon
json_data = line.replace('MCDISPLAY: polyhedron ', '')
# Parse the JSON string
data = json.loads(json_data)
# Extract vertices and faces from the parsed JSON
vertices = np.array(data['vertices'])
faces = np.array([face['face'] for face in data['faces']])
rotated_vertices = rotate_polygon(vertices, comp)
show_polygon(ax, color, transparency, faces, rotated_vertices)
def show_polygon(ax, color, transparency, faces, rotated_vertices):
pc = art3d.Poly3DCollection(rotated_vertices[faces],
facecolors=color,
edgecolors="black",
linewidths=0.1,
alpha=transparency)
ax.add_collection(pc)
def rotate_polygon(vertices_arr, comp):
global x_max_polygon, x_min_polygon, y_max_polygon, y_min_polygon, z_max_polygon, z_min_polygon
rotated_vertices_arr = np.zeros((len(vertices_arr), 3))
for i, vertex in enumerate(vertices_arr):
(x, y, z) = rotate(vertex, comp)
rotated_vertices_arr[i] = [z, x, y]
# for setting axis limits
x_max_polygon = max(x_max_polygon, z)
x_min_polygon = min(x_min_polygon, z)
y_max_polygon = max(y_max_polygon, x)
y_min_polygon = min(y_min_polygon, x)
z_max_polygon = max(z_max_polygon, y)
z_min_polygon = min(z_min_polygon, y)
return rotated_vertices_arr
'''END NEW CODE 3D-visualization. REMOVE OLD CODE AND THIS COMMENT AFTER CONVERTING COMPONENTS'''
def register_state_and_scatter(comp, line, prev, xstate, ystate, zstate):
xyz = [float(x) for x in line[line.find(':') + 1:].split(',')[:3]]
xyz = rotate(xyz, comp)
if prev is not None:
xstate.append(xyz[0])
ystate.append(xyz[1])
zstate.append(xyz[2])
prev = xyz
xstate.append(prev[0])
ystate.append(prev[1])
zstate.append(prev[2])
def set_axis_limits(ax):
# A little bit of logic for controlling the aspect ratios/view
(xmin, xmax) = ax.get_xlim()
(ymin, ymax) = ax.get_ylim()
(zmin, zmax) = ax.get_zlim()
# Consider polygon limits
xmax = max(x_max_polygon, xmax)
ymax = max(y_max_polygon, ymax)
zmax = max(z_max_polygon, zmax)
xmin = min(x_min_polygon, xmin)
ymin = min(y_min_polygon, ymin)
zmin = min(z_min_polygon, zmin)
dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
dmax = max(dx, dy, dz)
# Check ranges and define axis box of max length cubed
if dmax > dx:
mean = (xmax + xmin) / 2
xmin = mean - dmax / 2
xmax = mean + dmax / 2
if dmax > dy:
mean = (ymax + ymin) / 2
ymin = mean - dmax / 2
ymax = mean + dmax / 2
if dmax > dz:
mean = (zmax + zmin) / 2
zmin = mean - dmax / 2
zmax = mean + dmax / 2
# Set new axis limits
ax.set_xlim3d(xmin, xmax)
ax.set_ylim3d(ymin, ymax)
ax.set_zlim3d(zmin, zmax)
if __name__ == '__main__':
parse_trace()
|