File: util.py

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (271 lines) | stat: -rw-r--r-- 8,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
''' Helper module to support McStas trace output processing '''

from sys import stdin, stderr
from math import pi, cos, sin
from numpy import dot, array
import numpy as np

#level of detail in linspace
NUM_SAMPLES = 100


def parse_multiline(line):
    ''' Parse a multiline with size as first elements and n points as rest '''
    elems = [float(x) for x in line.split(',')]
    count = int(elems.pop(0))
    points = []
    while count > 0:
        points.append(elems[0:3])
        elems = elems[3:]
        count -= 1

    points.append(points[0])
    return points


def rotate(point, inps):
    ''' Rotate and move v according to origin and rotation matrix '''
    (origin, rotm)=inps
    return dot(point, rotm) + origin


def rotate_points(points, inps):
    ''' Rotate and move v according to origin and rotation matrix '''
    (origin, rotm)=inps
    count = 0
    rpoints=[]
    x=[]
    y=[]
    z=[]
    while count < len(points):
        p=points[count]
        rpoints.append(rotate(p, (origin, rotm)))
        p=rpoints[count]
        x.append(p[0])
        y.append(p[1])
        z.append(p[2])
        count +=1
    x.append(x[0])
    y.append(y[0])
    z.append(z[0])
    return x, y, z

'''BEGIN NEW CODE 3D-visualization. REMOVE OLD CODE AND THIS COMMENT AFTER CONVERTING COMPS'''


def rotate_xyz(x, y, z, comp):
    if x.ndim == 2:  # Handle 2D arrays
        for i in range(len(x)):
            for j in range(len(x[0])):
                point = np.array([x[i][j], y[i][j], z[i][j]])
                rotated_point = rotate(point, comp)
                x[i][j], y[i][j], z[i][j] = rotated_point
    else:  # Handle 1D arrays
        for i in range(len(x)):
            point = np.array([x[i], y[i], z[i]])
            rotated_point = rotate(point, comp)
            x[i], y[i], z[i] = rotated_point
    return x, y, z


def draw_sphere(center, radius):
    u = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
    v = np.linspace(0, np.pi, NUM_SAMPLES)
    x = center[0] + radius * np.outer(np.cos(u), np.sin(v))
    y = center[1] + radius * np.outer(np.sin(u), np.sin(v))
    z = center[2] + radius * np.outer(np.ones(np.size(u)), np.cos(v))
    return x, y, z


def draw_cylinder(center, radius, height, axis_vector):
    axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)

    # Calculate half of the height vector
    half_height_vector = (height / 2) * axis_vector_normalized

    # Calculate the startpoint
    p0 = center - half_height_vector

    t = np.linspace(0, height, NUM_SAMPLES)
    theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
    t, theta = np.meshgrid(t, theta)

    n1, n2 = calc_perp_vectors(axis_vector)

    x = p0[0] + axis_vector_normalized[0] * t + radius * np.sin(theta) * n1[0] + radius * np.cos(theta) * n2[0]
    y = p0[1] + axis_vector_normalized[1] * t + radius * np.sin(theta) * n1[1] + radius * np.cos(theta) * n2[1]
    z = p0[2] + axis_vector_normalized[2] * t + radius * np.sin(theta) * n1[2] + radius * np.cos(theta) * n2[2]

    return x, y, z


def draw_annulus(center, outer_radius, inner_radius, axis_vector):
    # Polar coordinates in the annulus' plane
    theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
    r = np.linspace(0, inner_radius, NUM_SAMPLES)
    theta, r = np.meshgrid(theta, r)

    # Calculate coordinates in the annulus's plane
    x_plane = (outer_radius-r) * np.cos(theta)
    y_plane = (outer_radius-r) * np.sin(theta)

    (x, y, z) = center_and_align_with_axis_vector(center, x_plane, y_plane, axis_vector)

    return x, y, z


def draw_disc(center, radius, axis_vector):
    return draw_annulus(center, radius, radius, axis_vector)


def draw_new_circle(center, radius, axis_vector):
    return draw_annulus(center, radius, 0.01, axis_vector)


def draw_cone(center, radius, height, axis_vector):
    # Define the grid in polar coordinates
    theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
    z = np.linspace(-height / 2, height / 2, NUM_SAMPLES)
    theta, z = np.meshgrid(theta, z)

    # Convert polar to Cartesian coordinates (original, along z-axis)
    x_plane = (radius * (z - height/2) / height) * np.cos(theta)
    y_plane = (radius * (z - height/2) / height) * np.sin(theta)

    # Compute the two perpendicular vectors
    n1, n2 = calc_perp_vectors(axis_vector)

    # Transform these coordinates to align with the given axis_vector
    x = center[0] + x_plane * n1[0] + y_plane * n2[0] + z * axis_vector[0]
    y = center[1] + x_plane * n1[1] + y_plane * n2[1] + z * axis_vector[1]
    z = center[2] + x_plane * n1[2] + y_plane * n2[2] + z * axis_vector[2]

    return x, y, z


def draw_box(center, a, b, c):
    #spherical coordinates cube
    phi = np.arange(1, 10, 2)*np.pi/4
    phi, theta = np.meshgrid(phi, phi)
    x = center[0] + (np.cos(phi)*np.sin(theta))*a
    y = center[1] + (np.sin(phi)*np.sin(theta))*b
    z = center[2] + (np.cos(theta)/np.sqrt(2))*c

    return x, y, z


def draw_hollow_box(center, a, b, c, thickness):
    outer_vertices = np.array([
        [a, 0, 0],
        [0, b, 0],
        [0, 0, c],
        [0, 0, 0],
        [a, 0, c],
        [a, b, 0],
        [a, b, c],
        [0, b, c]
    ], dtype=float)

    inner_vertices = np.array([
        [a-thickness, 0+thickness, 0],
        [0+thickness, b-thickness, 0],
        [0+thickness, 0+thickness, c],
        [0+thickness, 0+thickness, 0],

        [a-thickness, 0+thickness, c],
        [a-thickness, b-thickness, 0],
        [a-thickness, b-thickness, c],
        [0+thickness, b-thickness, c]
    ], dtype=float)

    #Center
    outer_vertices -= [a/2, b/2, c/2]
    inner_vertices -= [a/2, b/2, c/2]

    # Translate vertices to the center position
    outer_vertices += center
    inner_vertices += center

    # Combine outer and inner vertices
    vertices = np.vstack([outer_vertices, inner_vertices])

    faces = [
        [0, 4, 6, 5],
        [1, 5, 6, 7],
        [3, 0, 4, 2],
        [3, 1, 7, 2],

        [8, 12, 14, 13],
        [9, 13, 14, 15],
        [11, 8, 12, 10],
        [11, 9, 15, 10],

        [0, 8, 11, 3],
        [3, 11, 9, 1],
        [1, 9, 13, 5],
        [5, 13, 8, 0],

        [4, 12, 10, 2],
        [2, 10, 15, 7],
        [7, 15, 14, 6],
        [6, 14, 12, 4]
    ]
    return faces, vertices


def center_and_align_with_axis_vector(center, x_plane, y_plane, axis_vector):
    # Calculate perpendicular vectors
    n1, n2 = calc_perp_vectors(axis_vector)
    # Transform the coordinates
    x = center[0] + x_plane * n1[0] + y_plane * n2[0]
    y = center[1] + x_plane * n1[1] + y_plane * n2[1]
    z = center[2] + x_plane * n1[2] + y_plane * n2[2]
    return x, y, z

def calc_perp_vectors(axis_vector):
    # Normalize the axis vector
    axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)
    # Create an arbitrary vector perpendicular to the axis vector
    if (axis_vector_normalized == np.array([1, 0, 0])).all():
        not_v = np.array([0, 1, 0])
    else:
        not_v = np.array([1, 0, 0])
    # Compute two orthogonal vectors in the plane perpendicular to the axis vector
    n1 = np.cross(axis_vector_normalized, not_v)
    n1 /= np.linalg.norm(n1)  # Normalize n1
    n2 = np.cross(axis_vector_normalized, n1)
    return n1, n2

'''END NEW CODE 3D-visualization. REMOVE OLD CODE AND THIS COMMENT AFTER CONVERTING COMPS'''

POINTS_IN_CIRCLE = 128
def draw_circle(plane, pos, radius, comp):
    ''' Draw a circle in plane, at pos and with r radius, rotated by comp '''
    first = None
    x=[]
    y=[]
    z=[]
    for i in range(0, POINTS_IN_CIRCLE):
        walk = 2 * pi * i / POINTS_IN_CIRCLE
        xyz = array(pos)
        xyz[plane[0]] += cos(walk) * radius
        xyz[plane[1]] += sin(walk) * radius
        # rotate
        xyz = rotate(xyz, comp)
        x.append(xyz[0])
        y.append(xyz[1])
        z.append(xyz[2])
    x.append(x[0]);
    y.append(y[0]);
    z.append(z[0]);
    return x,y,z


def get_line():
    ''' Read a line from stdin '''
    return stdin.readline().strip()


def debug(obj):
    ''' Write a Python object to stderr '''
    stderr.write(repr(obj) + '\n')