1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
''' Helper module to support McStas trace output processing '''
from sys import stdin, stderr
from math import pi, cos, sin
from numpy import dot, array
import numpy as np
#level of detail in linspace
NUM_SAMPLES = 100
def parse_multiline(line):
''' Parse a multiline with size as first elements and n points as rest '''
elems = [float(x) for x in line.split(',')]
count = int(elems.pop(0))
points = []
while count > 0:
points.append(elems[0:3])
elems = elems[3:]
count -= 1
points.append(points[0])
return points
def rotate(point, inps):
''' Rotate and move v according to origin and rotation matrix '''
(origin, rotm)=inps
return dot(point, rotm) + origin
def rotate_points(points, inps):
''' Rotate and move v according to origin and rotation matrix '''
(origin, rotm)=inps
count = 0
rpoints=[]
x=[]
y=[]
z=[]
while count < len(points):
p=points[count]
rpoints.append(rotate(p, (origin, rotm)))
p=rpoints[count]
x.append(p[0])
y.append(p[1])
z.append(p[2])
count +=1
x.append(x[0])
y.append(y[0])
z.append(z[0])
return x, y, z
'''BEGIN NEW CODE 3D-visualization. REMOVE OLD CODE AND THIS COMMENT AFTER CONVERTING COMPS'''
def rotate_xyz(x, y, z, comp):
if x.ndim == 2: # Handle 2D arrays
for i in range(len(x)):
for j in range(len(x[0])):
point = np.array([x[i][j], y[i][j], z[i][j]])
rotated_point = rotate(point, comp)
x[i][j], y[i][j], z[i][j] = rotated_point
else: # Handle 1D arrays
for i in range(len(x)):
point = np.array([x[i], y[i], z[i]])
rotated_point = rotate(point, comp)
x[i], y[i], z[i] = rotated_point
return x, y, z
def draw_sphere(center, radius):
u = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
v = np.linspace(0, np.pi, NUM_SAMPLES)
x = center[0] + radius * np.outer(np.cos(u), np.sin(v))
y = center[1] + radius * np.outer(np.sin(u), np.sin(v))
z = center[2] + radius * np.outer(np.ones(np.size(u)), np.cos(v))
return x, y, z
def draw_cylinder(center, radius, height, axis_vector):
axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)
# Calculate half of the height vector
half_height_vector = (height / 2) * axis_vector_normalized
# Calculate the startpoint
p0 = center - half_height_vector
t = np.linspace(0, height, NUM_SAMPLES)
theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
t, theta = np.meshgrid(t, theta)
n1, n2 = calc_perp_vectors(axis_vector)
x = p0[0] + axis_vector_normalized[0] * t + radius * np.sin(theta) * n1[0] + radius * np.cos(theta) * n2[0]
y = p0[1] + axis_vector_normalized[1] * t + radius * np.sin(theta) * n1[1] + radius * np.cos(theta) * n2[1]
z = p0[2] + axis_vector_normalized[2] * t + radius * np.sin(theta) * n1[2] + radius * np.cos(theta) * n2[2]
return x, y, z
def draw_annulus(center, outer_radius, inner_radius, axis_vector):
# Polar coordinates in the annulus' plane
theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
r = np.linspace(0, inner_radius, NUM_SAMPLES)
theta, r = np.meshgrid(theta, r)
# Calculate coordinates in the annulus's plane
x_plane = (outer_radius-r) * np.cos(theta)
y_plane = (outer_radius-r) * np.sin(theta)
(x, y, z) = center_and_align_with_axis_vector(center, x_plane, y_plane, axis_vector)
return x, y, z
def draw_disc(center, radius, axis_vector):
return draw_annulus(center, radius, radius, axis_vector)
def draw_new_circle(center, radius, axis_vector):
return draw_annulus(center, radius, 0.01, axis_vector)
def draw_cone(center, radius, height, axis_vector):
# Define the grid in polar coordinates
theta = np.linspace(0, 2 * np.pi, NUM_SAMPLES)
z = np.linspace(-height / 2, height / 2, NUM_SAMPLES)
theta, z = np.meshgrid(theta, z)
# Convert polar to Cartesian coordinates (original, along z-axis)
x_plane = (radius * (z - height/2) / height) * np.cos(theta)
y_plane = (radius * (z - height/2) / height) * np.sin(theta)
# Compute the two perpendicular vectors
n1, n2 = calc_perp_vectors(axis_vector)
# Transform these coordinates to align with the given axis_vector
x = center[0] + x_plane * n1[0] + y_plane * n2[0] + z * axis_vector[0]
y = center[1] + x_plane * n1[1] + y_plane * n2[1] + z * axis_vector[1]
z = center[2] + x_plane * n1[2] + y_plane * n2[2] + z * axis_vector[2]
return x, y, z
def draw_box(center, a, b, c):
#spherical coordinates cube
phi = np.arange(1, 10, 2)*np.pi/4
phi, theta = np.meshgrid(phi, phi)
x = center[0] + (np.cos(phi)*np.sin(theta))*a
y = center[1] + (np.sin(phi)*np.sin(theta))*b
z = center[2] + (np.cos(theta)/np.sqrt(2))*c
return x, y, z
def draw_hollow_box(center, a, b, c, thickness):
outer_vertices = np.array([
[a, 0, 0],
[0, b, 0],
[0, 0, c],
[0, 0, 0],
[a, 0, c],
[a, b, 0],
[a, b, c],
[0, b, c]
], dtype=float)
inner_vertices = np.array([
[a-thickness, 0+thickness, 0],
[0+thickness, b-thickness, 0],
[0+thickness, 0+thickness, c],
[0+thickness, 0+thickness, 0],
[a-thickness, 0+thickness, c],
[a-thickness, b-thickness, 0],
[a-thickness, b-thickness, c],
[0+thickness, b-thickness, c]
], dtype=float)
#Center
outer_vertices -= [a/2, b/2, c/2]
inner_vertices -= [a/2, b/2, c/2]
# Translate vertices to the center position
outer_vertices += center
inner_vertices += center
# Combine outer and inner vertices
vertices = np.vstack([outer_vertices, inner_vertices])
faces = [
[0, 4, 6, 5],
[1, 5, 6, 7],
[3, 0, 4, 2],
[3, 1, 7, 2],
[8, 12, 14, 13],
[9, 13, 14, 15],
[11, 8, 12, 10],
[11, 9, 15, 10],
[0, 8, 11, 3],
[3, 11, 9, 1],
[1, 9, 13, 5],
[5, 13, 8, 0],
[4, 12, 10, 2],
[2, 10, 15, 7],
[7, 15, 14, 6],
[6, 14, 12, 4]
]
return faces, vertices
def center_and_align_with_axis_vector(center, x_plane, y_plane, axis_vector):
# Calculate perpendicular vectors
n1, n2 = calc_perp_vectors(axis_vector)
# Transform the coordinates
x = center[0] + x_plane * n1[0] + y_plane * n2[0]
y = center[1] + x_plane * n1[1] + y_plane * n2[1]
z = center[2] + x_plane * n1[2] + y_plane * n2[2]
return x, y, z
def calc_perp_vectors(axis_vector):
# Normalize the axis vector
axis_vector_normalized = axis_vector / np.linalg.norm(axis_vector)
# Create an arbitrary vector perpendicular to the axis vector
if (axis_vector_normalized == np.array([1, 0, 0])).all():
not_v = np.array([0, 1, 0])
else:
not_v = np.array([1, 0, 0])
# Compute two orthogonal vectors in the plane perpendicular to the axis vector
n1 = np.cross(axis_vector_normalized, not_v)
n1 /= np.linalg.norm(n1) # Normalize n1
n2 = np.cross(axis_vector_normalized, n1)
return n1, n2
'''END NEW CODE 3D-visualization. REMOVE OLD CODE AND THIS COMMENT AFTER CONVERTING COMPS'''
POINTS_IN_CIRCLE = 128
def draw_circle(plane, pos, radius, comp):
''' Draw a circle in plane, at pos and with r radius, rotated by comp '''
first = None
x=[]
y=[]
z=[]
for i in range(0, POINTS_IN_CIRCLE):
walk = 2 * pi * i / POINTS_IN_CIRCLE
xyz = array(pos)
xyz[plane[0]] += cos(walk) * radius
xyz[plane[1]] += sin(walk) * radius
# rotate
xyz = rotate(xyz, comp)
x.append(xyz[0])
y.append(xyz[1])
z.append(xyz[2])
x.append(x[0]);
y.append(y[0]);
z.append(z[0]);
return x,y,z
def get_line():
''' Read a line from stdin '''
return stdin.readline().strip()
def debug(obj):
''' Write a Python object to stderr '''
stderr.write(repr(obj) + '\n')
|