1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#!/usr/bin/env python
'''
mcplot script for testing the ifit interface.
'''
import argparse
import logging
import os
import sys
import numpy as np
import pyqtgraph as pg
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from mccodelib import pqtgfrontend
from mccodelib import plotgraph
'''
Local plotting functions
'''
def plot_iData_1D(data, plt, log=False, legend=True, icolormap=0, verbose=True, legend_fontsize=10):
''' create a plotItem and populate it with data, Data1D '''
# data
#x = np.array(data.axesvals).astype(np.float)
x = data.axesvals[0]
y = data.signal
e = data.error
if log:
nonzeros=[]
zeros=[]
for i in range(len(y)):
if y[i]>0:
nonzeros.append(i)
else:
zeros.append(i)
if len(nonzeros)>0:
y[zeros] = np.min(y[nonzeros])/10
plt.setLogMode(y=True)
else:
plt.setLogMode(y=False)
else:
plt.setLogMode(y=False)
plt.setXRange(np.min(x), np.max(x), padding=0)
# labels
#plt.setLabels(title=" ",bottom=data.xlabel, left=data.ylabel)
# how to add labels with html styling:
#plt.titleLabel.item.setHtml('<span style="font-size:5pt; text-align:center;color:#FFFFFF">data.component <br>hest</span>')
#axis_style = {'color': '#FFF', 'font-size': '5pt'}
#plt.setLabel(axis='left', text=data.ylabel, **axis_style)
#plt.setLabel(axis='bottom', text=data.xlabel, **axis_style)
# error bars
beam = 0
if len(x) > 1:
beam = (x[1]-x[0])*0.5
# TODO: Find solution for adding errorbars in the log case
if not log:
err = pg.ErrorBarItem(x=x, y=y, height=e, beam=beam)
plt.addItem(err)
# plots data
plt.plot(x, y)
plt.setMenuEnabled(False)
vb = plt.getViewBox()
return vb
def plot_iData_2D(data, plt, log=False, legend=True, icolormap=0, verbose=True, legend_fontsize=10):
''' create a layout and populate a plotItem with data Data2D, adding a color bar '''
# data
img = pg.ImageItem()
dataset = np.array(data.signal)
x = data.axesvals[0]
y = data.axesvals[1]
dataset = np.transpose(dataset)
img.setImage(dataset)
# scale(x,y) is in %, translate(x,y) is in the original units
dx = (np.max(x) - np.min(x))/len(x)
dy = (np.max(y) - np.min(y))/len(y)
img.scale(dx,dy)
# Calculate translation in original pixel units
img.translate(np.min(x)/dx, np.min(y)/dy)
# color map (by lookup table)
pos_min = np.min(dataset)
pos_max = np.max(dataset)
# color map
cm = np.array([[ 0, 0, 143, 255], [ 0, 0, 159, 255], [ 0, 0, 175, 255], [ 0, 0, 191, 255], [ 0, 0, 207, 255], [ 0, 0, 223, 255], [ 0, 0, 239, 255], [ 0, 0, 255, 255], [ 0, 16, 255, 255], [ 0, 32, 255, 255], [ 0, 48, 255, 255], [ 0, 64, 255, 255], [ 0, 80, 255, 255], [ 0, 96, 255, 255], [ 0, 112, 255, 255], [ 0, 128, 255, 255], [ 0, 143, 255, 255], [ 0, 159, 255, 255], [ 0, 175, 255, 255], [ 0, 191, 255, 255], [ 0, 207, 255, 255], [ 0, 223, 255, 255], [ 0, 239, 255, 255], [ 0, 255, 255, 255], [ 16, 255, 239, 255], [ 32, 255, 223, 255], [ 48, 255, 207, 255], [ 64, 255, 191, 255], [ 80, 255, 175, 255], [ 96, 255, 159, 255], [112, 255, 143, 255], [128, 255, 128, 255], [143, 255, 112, 255], [159, 255, 96, 255], [175, 255, 80, 255], [191, 255, 64, 255], [207, 255, 48, 255], [223, 255, 32, 255], [239, 255, 16, 255], [255, 255, 0, 255], [255, 239, 0, 255], [255, 223, 0, 255], [255, 207, 0, 255], [255, 191, 0, 255], [255, 175, 0, 255], [255, 159, 0, 255], [255, 143, 0, 255], [255, 128, 0, 255], [255, 112, 0, 255], [255, 96, 0, 255], [255, 80, 0, 255], [255, 64, 0, 255], [255, 48, 0, 255], [255, 32, 0, 255], [255, 16, 0, 255], [255, 0, 0, 255], [239, 0, 0, 255], [223, 0, 0, 255], [207, 0, 0, 255], [191, 0, 0, 255], [175, 0, 0, 255], [159, 0, 0, 255], [143, 0, 0, 255], [128, 0, 0, 255]], dtype=np.ubyte)
pos = pos_min + (pos_max - pos_min) * np.arange(len(cm))/(len(cm)-1)
colormap = pg.ColorMap(pos, cm)
lut = colormap.getLookupTable(pos_min, pos_max, 256)
img.setLookupTable(lut)
plt.setMenuEnabled(False)
plt.addItem(img)
# Set the x and y ranges correctly
plt.getViewBox().setXRange(np.min(x), np.max(x), padding=0)
plt.getViewBox().setYRange(np.min(y), np.max(y), padding=0)
return plt.getViewBox()
def plot(node, i, plt, opts):
'''
plug-in function used by plotter ui called PyQtGraphFrontend
node : plot node containing data
i : index of said data in node
opts : dict containing options such as --> log, legend, icolormap, verbose, legend_fontsize
'''
if type(node) == plotgraph.PNSingle and i != 0:
raise Exception("inconsistent plot request, idx=%s" % str(i))
data = node.getdata_idx(i)
plotfunc = None
if len(data.axesvals) == 1:
plotfunc = plot_iData_1D
elif len(data.axesvals) == 2:
plotfunc = plot_iData_2D
else:
raise Exception("three- or higher dimensional plotting not supported on this device")
view_box = plotfunc(data, plt, log=opts['log'], legend=opts['legend'], icolormap=opts['icolormap'], verbose=opts['verbose'], legend_fontsize=opts['fontsize'])
return view_box, plt
'''
iFit interface classes
'''
class IDataShadow:
def __init__(self, signal, error, monitor, axesvals):
self.signal = signal
self.error = error
self.monitor = monitor
self.axesvals = axesvals
class IFuncShadow:
def __init__(self, definition):
self.definition = definition
class IFitInterfaceOfficial:
'''
The lowest level above matlab, with special functions for getting
data out of iFit objects of type iData and iFunc.
'''
def __init__(self):
import matlab.engine # official mathworks impl
self.eng = matlab.engine.start_matlab('-nodesktop -nosplash', async=False)
self.eng.eval("addpath(genpath('/home/jaga/source/REPO_ifit'))")
def get_idata(self, varname):
''' load axes, signal and error from an ifit idata object '''
ndims = self.eng.eval('ndims(%s)' % varname)
ndims = int(ndims)
signal = None
error = None
axes_names = self.eng.eval('%s.Axes' % varname, nargout=1) # NOTE: len(axes_names) == ndims
axesvals = []
if not ndims == len(axes_names):
# TODO: handle this case seperately, in which ifit has not found any axes in the data
raise Exception("ifit could not find axes")
# get signal
if ndims == 1:
xvals = np.array(self.eng.eval('a.%s' % axes_names[0])[0]).astype(np.float)
axesvals.append(xvals)
signal = np.array(self.eng.eval('%s.Signal' % varname, nargout=1)).astype(np.float)
signal = np.reshape(signal, (1, len(signal)))[0].tolist()
error = np.array(self.eng.eval('%s.Error' % varname, nargout=1)).astype(np.float)
error = np.reshape(error, (1, len(error)))[0]
# TODO: what about monitor?
#monitor = np.array(self.eng.eval('%s.Monitor' % varname, nargout=1))
#monitor = np.reshape(monitor, (1, len(monitor)))[0]
#monitor = None
elif ndims == 2:
xvals = np.array(self.eng.eval('a.%s' % axes_names[0])[0]).astype(np.float)
yvals = np.array(self.eng.eval('a.%s' % axes_names[1])[0]).astype(np.float)
axesvals.append(xvals)
axesvals.append(yvals)
signal = np.array(self.eng.eval('%s.Signal' % varname, nargout=1)).astype(np.float)
error = np.array(self.eng.eval('%s.Error' % varname, nargout=1)).astype(np.float)
else:
for i in range(ndims):
ivals = np.array(self.eng.eval('a.%s' % axes_names[i])[0]).astype(np.float)
axesvals.append(ivals)
signal = np.array(self.eng.eval('%s.Signal' % varname, nargout=1)).astype(np.float)
error = np.array(self.eng.eval('%s.Error' % varname, nargout=1)).astype(np.float)
return IDataShadow(signal, error, None, axesvals)
def get_ifunc(self, varname):
definition = self.eng.eval('%s.Signal' % varname, nargout=1)
return IFuncShadow(definition)
def get(self, varname):
something = self.eng.eval('%s' % varname, nargout=1)
return something
def assign(self, varname, expression):
self.eng.eval("%s = %s" % (varname, expression), nargout=0)
def eval(self, expression):
self.eng.eval("" % expression, nargout=1)
class IFitInterface:
'''
The lowest level above matlab, with special functions for getting
data out of iFit objects of type iData and iFunc.
'''
def __init__(self):
import matlab_ef # Emmanuel Farhi's matlab interface
self.eng = matlab_ef.Matlab()
def get_idata(self, varname):
signal = np.array(self.eng.get('%s.Signal' % varname))
error = np.array(self.eng.get('%s.Error' % varname))
monitor = None # np.array(self.eng.eval('%s.Monitor' % varname))
axes_names = self.eng.get('%s.Axes' % varname)
firstaxes_vals = np.array(self.eng.get('a.%s' % axes_names))
return IDataShadow(signal, error, monitor, firstaxes_vals)
def get_ifunc(self, varname):
definition = self.eng.get('%s.Signal' % varname)
return IFuncShadow(definition)
def get(self, varname):
something = self.eng.get('%s' % varname)
return something
def assign(self, varname, expression):
self.eng.eval("%s = %s" % (varname, expression))
def eval(self, expression):
self.eng.eval("" % expression)
'''
Local script classes
'''
class IFitLoaderSimple:
'''
loads 1D data from ifit and transforms this into a plotgraph.
'''
def __init__(self, datafile):
''' '''
#import matlab_ef # Emmanuel Farhi's matlab interface
self.datafile = datafile[0]
self.plot_graph = None
#self.interface = IFitInterface()
self.interface = IFitInterfaceOfficial()
if not os.path.exists(self.datafile):
raise Exception("requested file to load does not exist")
def load(self):
i = self.interface
i.assign('a', 'load(iData, \'%s\')' % self.datafile)
#i.assign('a', 'load(iData, [ ifitpath \'Data/sv1850.scn\' ])')
#i.assign('a', 'load(iData, \'\/home\/jaga\/source\/McCode\/tools\/Python\/mcplot\/fitlab\/100706.dat\')')
#ap = eng.eval('a.Signal', nargout=1)
iData = i.get_idata('a')
graph = plotgraph.PNSingle(plotgraph.DataHandle(load_fct=None, data=iData))
return graph
def main(args):
''' load data from iFit interface and send it to the pyqtgraph frontend '''
logging.basicConfig(level=logging.INFO)
# ensure keyboardinterrupt ctr-c
import signal
signal.signal(signal.SIGINT, signal.SIG_DFL)
try:
# load data
loader = IFitLoaderSimple(datafile=args.datafile)
graph = loader.load()
# run pqtg frontend
plotter = pqtgfrontend.McPyqtgraphPlotter(graph, sourcedir='/nosourcedir/', plot_func=plot, invcanvas=False)
plotter.runplot()
except KeyboardInterrupt:
print('keyboard interrupt')
except Exception as e:
print('mcplot error: %s' % e.__str__())
raise e
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('datafile', nargs='*', help='file to plot')
args = parser.parse_args()
main(args)
|