1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
#!/usr/bin/env python3
#
# Calculates the covariance from neutron events.
#
# @author Tobias Weber <tweber@ill.fr>
# @date 30-mar-2019
# @license GNU GPLv3
#
# @descr This tool comes from Takin 2: https://dx.doi.org/10.5281/zenodo.4117437
# @descr For a good explanation of the covariance matrix method, see T. Arens et al., "Mathematik", 2015, ISBN: 978-3-642-44919-2, pp. 795 and 1372.
# @descr Reimplements the functionality of https://github.com/McStasMcXtrace/McCode/blob/master/tools/Legacy-Perl/mcresplot.pl
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import os
import tas
try:
import numpy as np
import numpy.linalg as la
except ImportError:
print("Numpy could not be imported!")
exit(-1)
try:
np.set_printoptions(
precision = 4,
floatmode = "fixed")
except TypeError:
print("Warning: Numpy print options could not be set.")
options = {
"verbose" : True, # console outputs
"plot_results" : True, # show plot window
"plot_neutrons" : True, # also plot neutron events
"centre_on_Q" : False, # centre plots on Q or zero?
"ellipse_points" : 128, # number of points to draw ellipses
"symsize" : 32.,
"dpi" : 600,
"use_tex" : False,
# column indices in ki,kf files
"ki_start_idx" : 0, # start index of ki 3-vector
"kf_start_idx" : 3, # start index of kf 3-vector
"wi_idx" : 9, # start index of ki weight factor
"wf_idx" : 10, # start index of kf weight factor
# column indices in Q,E files
"Q_start_idx" : 0,
"E_idx" : 3,
"w_idx" : 4,
"filter_eps" : 1e-4,
}
# constants
sig2hwhm = np.sqrt(2. * np.log(2.))
sig2fwhm = 2.*sig2hwhm
#
# normalises events and filters out too low probabilities
#
def filter_events(Q, E, w):
if w.size == 0:
raise ValueError("No neutron events available.")
# normalise intensity/probability
maxw = np.max(w)
if np.abs(maxw) < np.finfo(w[0].__class__).eps:
raise ValueError("Neutron probability factors are zero.")
w /= maxw
# filter out too low probabilities
beloweps = lambda d: np.abs(d) <= options["filter_eps"]
nonzero_idx = [i for i in range(len(w)) if not beloweps(w[i])]
Q = Q[nonzero_idx]
E = E[nonzero_idx]
w = w[nonzero_idx]
if w.size == 0:
raise ValueError("No neutron events left after filtering.")
return [Q, E, w]
#
# loads a list of neutron events in the [ ki_vec, kf_vec, pos_vec, wi, wf ] format
#
def load_events_kikf(filename):
dat = np.loadtxt(filename)
ki = dat[:, options["ki_start_idx"]:options["ki_start_idx"]+3]
kf = dat[:, options["kf_start_idx"]:options["kf_start_idx"]+3]
wi = dat[:, options["wi_idx"]]
wf = dat[:, options["wf_idx"]]
w = wi * wf
Q = ki - kf
E = tas.k2_to_E * (np.multiply(ki, ki).sum(1) - np.multiply(kf, kf).sum(1))
return filter_events(Q, E, w)
#
# loads a list of neutron events in the [ h, k, l, E, w ] format
#
def load_events_QE(filename):
dat = np.loadtxt(filename)
Q = dat[:, options["Q_start_idx"]:options["Q_start_idx"]+3]
E = dat[:, options["E_idx"]]
w = dat[:, options["w_idx"]]
return filter_events(Q, E, w)
#
# calculates the covariance matrix of the (Q, E) 4-vectors
#
def calc_covar(Q, E, w, Qpara, Qperp):
# make a [Q, E] 4-vector
Q4 = np.insert(Q, 3, E, axis=1)
# calculate the mean Q 4-vector
Qmean = [ np.average(Q4[:,i], weights = w) for i in range(4) ]
if options["verbose"]:
print("Mean (Q, E) vector in lab system:\n%s\n" % Qmean)
# get the weighted covariance matrix
Qcov = np.cov(Q4, rowvar = False, aweights = np.abs(w), ddof = 0)
if options["verbose"]:
print("Covariance matrix in lab system:\n%s\n" % Qcov)
# the resolution is the inverse of the covariance
Qres = la.inv(Qcov)
if options["verbose"]:
print("Resolution matrix in lab system:\n%s\n" % Qres)
# create a matrix to transform into the coordinate system with Q along x
# choose given coordinate system
if len(Qpara) == 3 and len(Qperp) == 3:
Qnorm = Qpara / la.norm(Qpara)
Qside = Qperp / la.norm(Qperp)
Qup = np.cross(Qnorm, Qside)
else:
Qnorm = Qmean[0:3] / la.norm(Qmean[0:3])
Qup = np.array([0, 1, 0])
Qside = np.cross(Qup, Qnorm)
if options["verbose"]:
print("Qpara = %s\nQperp = %s\nQup = %s\n" % (Qnorm, Qside, Qup))
# trafo matrix
T = np.transpose(np.array([
np.insert(Qnorm, 3, 0),
np.insert(Qside, 3, 0),
np.insert(Qup, 3, 0),
[0, 0, 0, 1] ]))
if options["verbose"]:
print("Transformation into (Qpara, Qperp, Qup, E) system:\n%s\n" % T)
# transform mean Q vector
Qmean_Q = np.dot(np.transpose(T), Qmean)
if options["verbose"]:
print("Mean (Q, E) vector in (Qpara, Qperp, Qup, E) system:\n%s\n" % Qmean_Q)
# transform the covariance matrix
Qcov_Q = np.dot(np.transpose(T), np.dot(Qcov, T))
if options["verbose"]:
print("Covariance matrix in (Qpara, Qperp, Qup, E) system:\n%s\n" % Qcov_Q)
# the resolution is the inverse of the covariance
Qres_Q = la.inv(Qcov_Q)
if options["verbose"]:
print("Resolution matrix in (Qpara, Qperp, Qup, E) system:\n%s\n" % Qres_Q)
#[ evals, evecs ] = la.eig(Qcov_Q)
#print("Ellipsoid fwhm radii:\n%s\n" % (np.sqrt(np.abs(evals)) * sig2fwhm))
# transform all neutron events
Q4_Q = np.array([])
if options["plot_neutrons"]:
Q4_Q = np.dot(Q4, T)
if not options["centre_on_Q"]:
Q4_Q -= Qmean_Q
return [Qres_Q, Q4_Q, Qmean_Q]
#
# calculates the characteristics of a given ellipse by principal axis trafo
#
def descr_ellipse(quadric):
[ evals, evecs ] = la.eig(quadric)
#print("Evals: %s" % evals)
fwhms = 1./np.sqrt(np.abs(evals)) * sig2fwhm
angles = np.array([])
if len(quadric) == 2:
angles = np.array([ np.arctan2(evecs[1][0], evecs[0][0]) ])
return [fwhms, angles/np.pi*180., evecs]
#
# projects along one axis of the quadric
# see equ. 57 and 58 in: G. Eckold and O. Sobolev, NIM A 752, pp. 54-64 (2014), doi: 10.1016/j.nima.2014.03.019
#
def proj_quad(_E, idx):
E = np.delete(np.delete(_E, idx, axis=0), idx, axis=1)
if np.abs(_E[idx, idx]) < 1e-8:
return E
v = (_E[idx,:] + _E[:,idx]) * 0.5
vv = np.outer(v, v) / _E[idx, idx]
vv = np.delete(np.delete(vv, idx, axis=0), idx, axis=1)
return E - vv
#
# describes the ellipsoid by a principal axis trafo and by 2d cuts
#
def calc_ellipses(Qres_Q):
# 4d ellipsoid
[fwhms, angles, rot] = descr_ellipse(Qres_Q)
axes_to_delete = [ [2, 1], [2, 0], [1,0], [3,2] ]
slice_first = [ True, True, True, False ]
results = []
for ellidx in range(len(axes_to_delete)):
# sliced 2d ellipse
Qres = np.delete(np.delete(Qres_Q, axes_to_delete[ellidx][0], axis=0), axes_to_delete[ellidx][0], axis=1)
Qres = np.delete(np.delete(Qres, axes_to_delete[ellidx][1], axis=0), axes_to_delete[ellidx][1], axis=1)
[fwhms, angles, rot] = descr_ellipse(Qres)
# projected 2d ellipse
if slice_first[ellidx]:
Qres_proj = np.delete(np.delete(Qres_Q, axes_to_delete[ellidx][0], axis=0), axes_to_delete[ellidx][0], axis=1)
Qres_proj = proj_quad(Qres_proj, axes_to_delete[ellidx][1])
else:
Qres_proj = proj_quad(Qres_Q, axes_to_delete[ellidx][0])
Qres_proj = np.delete(np.delete(Qres_proj, axes_to_delete[ellidx][1], axis=0), axes_to_delete[ellidx][1], axis=1)
[fwhms_proj, angles_proj, rot_proj] = descr_ellipse(Qres_proj)
results.append({ "fwhms" : fwhms, "angles" : angles, "rot" : rot,
"fwhms_proj" : fwhms_proj, "angles_proj" : angles_proj, "rot_proj" : rot_proj })
if options["verbose"]:
print("4d resolution ellipsoid diagonal elements fwhm (coherent-elastic scattering) lengths:\n%s\n" \
% (1./np.sqrt(np.abs(np.diag(Qres_Q))) * sig2fwhm))
print("4d resolution ellipsoid principal axes fwhm: %s" % fwhms)
Qres_proj = proj_quad(proj_quad(proj_quad(Qres_Q, 2), 1), 0)
print("Incoherent-elastic fwhm: %.4f meV\n" % (1./np.sqrt(np.abs(Qres_proj[0,0])) * sig2fwhm))
print("Qx,E sliced ellipse fwhm and slope angle: %s, %.4f" % (results[0]["fwhms"], results[0]["angles"][0]))
print("Qy,E sliced ellipse fwhm and slope angle: %s, %.4f" % (results[1]["fwhms"], results[1]["angles"][0]))
print("Qz,E sliced ellipse fwhm and slope angle: %s, %.4f" % (results[2]["fwhms"], results[2]["angles"][0]))
print("Qx,Qy sliced ellipse fwhm and slope angle: %s, %.4f" % (results[3]["fwhms"], results[3]["angles"][0]))
print()
print("Qx,E projected ellipse fwhm and slope angle: %s, %.4f" % (results[0]["fwhms_proj"], results[0]["angles_proj"][0]))
print("Qy,E projected ellipse fwhm and slope angle: %s, %.4f" % (results[1]["fwhms_proj"], results[1]["angles_proj"][0]))
print("Qz,E projected ellipse fwhm and slope angle: %s, %.4f" % (results[2]["fwhms_proj"], results[2]["angles_proj"][0]))
print("Qx,Qy projected ellipse fwhm and slope angle: %s, %.4f" % (results[3]["fwhms_proj"], results[3]["angles_proj"][0]))
return results
#
# shows the 2d ellipses
#
def plot_ellipses(file, Q4, w, Qmean, ellis):
try:
import mpl_toolkits.mplot3d as mplot3d
import matplotlib
import matplotlib.pyplot as plot
except ImportError:
print("Matplotlib could not be imported!")
exit(-1)
matplotlib.rc("text", usetex=options["use_tex"])
thesymsize = options["symsize"] * w
themarker = "."
ellfkt = lambda rad, rot, phi, Qmean2d : \
np.dot(rot, np.array([ rad[0]*np.cos(phi), rad[1]*np.sin(phi) ])) + Qmean2d
# 2d plots
fig = plot.figure()
num_ellis = len(ellis)
coord_axes = [[0,3], [1,3], [2,3], [0,1]]
coord_names = ["Qpara (1/A)", "Qperp (1/A)", "Qup (1/A)", "E (meV)"]
if options["use_tex"]:
coord_names[0] = "$Q_{\\parallel}$ (\\AA$^{-1}$)"
coord_names[1] = "$Q_{\\perp}$ (\\AA$^{-1}$)"
coord_names[2] = "$Q_{up}$ (\\AA$^{-1}$)"
ellplots = []
for ellidx in range(num_ellis):
# centre plots on zero or mean Q vector ?
QxE = np.array([[0], [0]])
if options["centre_on_Q"]:
QxE = np.array([[Qmean[coord_axes[ellidx][0]]], [Qmean[coord_axes[ellidx][0]]]])
phi = np.linspace(0, 2.*np.pi, options["ellipse_points"])
ell_QxE = ellfkt(ellis[ellidx]["fwhms"]*0.5, ellis[ellidx]["rot"], phi, QxE)
ell_QxE_proj = ellfkt(ellis[ellidx]["fwhms_proj"]*0.5, ellis[ellidx]["rot_proj"], phi, QxE)
ellplots.append({"sliced":ell_QxE, "proj":ell_QxE_proj})
subplot_QxE = fig.add_subplot(221 + ellidx)
subplot_QxE.set_xlabel(coord_names[coord_axes[ellidx][0]])
subplot_QxE.set_ylabel(coord_names[coord_axes[ellidx][1]])
if len(Q4.shape)==2 and len(Q4)>0 and len(Q4[0])==4:
subplot_QxE.scatter(Q4[:, coord_axes[ellidx][0]], Q4[:, coord_axes[ellidx][1]], marker=themarker, s=thesymsize)
subplot_QxE.plot(ell_QxE[0], ell_QxE[1], c="black", linestyle="dashed")
subplot_QxE.plot(ell_QxE_proj[0], ell_QxE_proj[1], c="black", linestyle="solid")
plot.tight_layout()
# 3d plot
fig3d = plot.figure()
subplot3d = fig3d.add_subplot(111, projection="3d")
subplot3d.set_xlabel(coord_names[0])
subplot3d.set_ylabel(coord_names[1])
subplot3d.set_zlabel(coord_names[3])
if len(Q4.shape)==2 and len(Q4)>0 and len(Q4[0])==4:
subplot3d.scatter(Q4[:,0], Q4[:,1], Q4[:,3], marker=themarker, s=thesymsize)
# xE
subplot3d.plot(ellplots[0]["sliced"][0], ellplots[0]["sliced"][1], zs=0., zdir="y", c="black", linestyle="dashed")
subplot3d.plot(ellplots[0]["proj"][0], ellplots[0]["proj"][1], zs=0., zdir="y", c="black", linestyle="solid")
# yE
subplot3d.plot(ellplots[1]["sliced"][0], ellplots[1]["sliced"][1], zs=0., zdir="x", c="black", linestyle="dashed")
subplot3d.plot(ellplots[1]["proj"][0], ellplots[1]["proj"][1], zs=0., zdir="x", c="black", linestyle="solid")
# xy
subplot3d.plot(ellplots[3]["sliced"][0], ellplots[3]["sliced"][1], zs=0., zdir="z", c="black", linestyle="dashed")
subplot3d.plot(ellplots[3]["proj"][0], ellplots[3]["proj"][1], zs=0., zdir="z", c="black", linestyle="solid")
if file != "":
splitext = os.path.splitext(file)
file3d = splitext[0] + "_3d" + splitext[1]
if options["verbose"]:
print("Saving 2d plot to \"%s\"." % file)
print("Saving 3d plot to \"%s\"." % file3d)
fig.savefig(file, dpi=options["dpi"])
fig3d.savefig(file3d, dpi=options["dpi"])
if options["plot_results"]:
plot.show()
#
# checks versions of needed packages
#
def check_versions():
npver = np.version.version.split(".")
if int(npver[0]) >= 2:
return
if int(npver[0]) < 1 or int(npver[1]) < 10:
print("Numpy version >= 1.10 is required, but installed version is %s." % np.version.version)
exit(-1)
#
# entry point
#
def run_cov():
print("This is a covariance matrix calculator using neutron events,"
"\n\tdoi: 10.5281/zenodo.4117437,"
"\n\twritten by T. Weber <tweber@ill.fr>, 30 March 2019.\n")
check_versions()
try:
import argparse as arg
except ImportError:
print("Argparse could not be imported!")
exit(-1)
args = arg.ArgumentParser(description="Calculates the covariance matrix of neutron scattering events.")
args.add_argument("file", type=str, help="input file")
args.add_argument("-s", "--save", default="", type=str, nargs="?", help="save plot to file")
args.add_argument("--ellipse", default=options["ellipse_points"], type=int, nargs="?", help="number of points to draw ellipses")
args.add_argument("--ki", default=options["ki_start_idx"], type=int, nargs="?", help="index of ki vector's first column in kikf file")
args.add_argument("--kf", default=options["kf_start_idx"], type=int, nargs="?", help="index of kf vector's first column in kikf file")
args.add_argument("--wi", default=options["wi_idx"], type=int, nargs="?", help="index of ki weight factor column in kikf file")
args.add_argument("--wf", default=options["wf_idx"], type=int, nargs="?", help="index of kf weight factor column in kikf file")
args.add_argument("--w", default=options["w_idx"], type=int, nargs="?", help="index of neutron weight factor column in QE file")
args.add_argument("--Q", default=options["Q_start_idx"], type=int, nargs="?", help="index of Q vector's first column in QE file")
args.add_argument("--E", default=options["E_idx"], type=int, nargs="?", help="index of E column in QE file")
args.add_argument("--QEfile", action="store_true", help="use the QE file type")
args.add_argument("--centreonQ", action="store_true", help="centre plots on mean Q")
args.add_argument("--noverbose", action="store_true", help="don't show console logs")
args.add_argument("--noplot", action="store_true", help="don't show any plot windows")
args.add_argument("--noneutrons", action="store_true", help="don't show neutron events in plots")
args.add_argument("--symsize", default=options["symsize"], type=float, nargs="?", help="size of the symbols in plots")
args.add_argument("--ax", default=None, type=float, nargs="?", help="x component of first orientation vector")
args.add_argument("--ay", default=None, type=float, nargs="?", help="y component of first orientation vector")
args.add_argument("--az", default=None, type=float, nargs="?", help="z component of first orientation vector")
args.add_argument("--bx", default=None, type=float, nargs="?", help="x component of second orientation vector")
args.add_argument("--by", default=None, type=float, nargs="?", help="y component of second orientation vector")
args.add_argument("--bz", default=None, type=float, nargs="?", help="z component of second orientation vector")
args.add_argument("--a", "--as", "-a", default=None, type=float, nargs="?", help="lattice constant a (only needed in case data is in rlu)")
args.add_argument("--b", "--bs", "-b", default=None, type=float, nargs="?", help="lattice constant b (only needed in case data is in rlu)")
args.add_argument("--c", "--cs", "-c", default=None, type=float, nargs="?", help="lattice constant c (only needed in case data is in rlu)")
args.add_argument("--aa", "--alpha", default=90., type=float, nargs="?", help="lattice angle alpha (only needed in case data is in rlu)")
args.add_argument("--bb", "--beta", default=90., type=float, nargs="?", help="lattice angle beta (only needed in case data is in rlu)")
args.add_argument("--cc", "--gamma", default=90., type=float, nargs="?", help="lattice angle gamma (only needed in case data is in rlu)")
args.add_argument("--filtereps", default=options["filter_eps"], type=float, nargs="?", help="epsilon probability below which neutron events are filtered out")
args.add_argument("--dpi", default=options["dpi"], type=int, nargs="?", help="DPI of output plot file")
args.add_argument("--tex", action="store_true", help="use tex in plots")
argv = args.parse_args()
options["verbose"] = (argv.noverbose==False)
options["plot_results"] = (argv.noplot==False)
options["plot_neutrons"] = (argv.noneutrons==False)
options["centre_on_Q"] = argv.centreonQ
options["dpi"] = argv.dpi
options["use_tex"] = argv.tex
B = []
if argv.a!=None and argv.b!=None and argv.c!=None and argv.aa!=None and argv.bb!=None and argv.cc!=None:
lattice = np.array([ argv.a, argv.b, argv.c, ])
angles = np.array([ argv.aa, argv.bb, argv.cc ]) / 180.*np.pi
B = tas.get_B(lattice, angles)
if options["verbose"]:
print("Crystal B matrix:\n%s\n" % B)
infile = argv.file
outfile = argv.save
options["ellipse_points"] = argv.ellipse
options["ki_start_idx"] = argv.ki
options["kf_start_idx"] = argv.kf
options["wi_idx"] = argv.wi
options["wf_idx"] = argv.wf
options["filter_eps"] = argv.filtereps
options["symsize"] = argv.symsize
avec = [ argv.az, argv.ay, argv.az ]
bvec = [ argv.bx, argv.by, argv.bz ]
try:
# input file is in h k l E w format?
if argv.QEfile:
[Q, E, w] = load_events_QE(infile)
# convert rlu to 1/A
if len(B) != 0:
Q = np.dot(Q, np.transpose(B))
# input file is in the kix kiy kiz kfx kfy kfz wi wf format?
else:
[Q, E, w] = load_events_kikf(infile)
except OSError:
print("Could not load input file %s." % infile)
exit(-1)
except NameError:
print("Error processing input file %s." % infile)
exit(-1)
if avec[0]!=None and avec[1]!=None and avec[2]!=None and bvec[0]!=None and bvec[1]!=None and bvec[2]!=None:
Qpara = np.array(avec)
Qperp = np.array(bvec)
# convert rlu to 1/A
if len(B) != 0:
Qpara = np.dot(B, Qpara)
Qperp = np.dot(B, Qperp)
else:
Qpara = np.array([])
Qperp = np.array([])
[Qres, Q4, Qmean] = calc_covar(Q, E, w, Qpara, Qperp)
calcedellis = calc_ellipses(Qres)
if options["plot_results"] or outfile!="":
plot_ellipses(outfile, Q4, w, Qmean, calcedellis)
#
# main
#
if __name__ == "__main__":
run_cov()
|