1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
from os.path import basename
from log import McRunException, getLogger
from datetime import datetime
from decimal import Decimal
from os.path import join
try:
from scipy.optimize import minimize
from numpy import sqrt, zeros, exp
except:
# Optimizer class not available
pass
LOG = getLogger('optimisation')
def build_header(options, params, intervals, detectors):
template = """
# Instrument-source: '%(instr)s'
# Date: %(date)s
# Ncount: %(ncount)i
# Numpoints: %(numpoints)i
# Param: %(params)s
# type: %(type)s
# title: %(title)s
# xlabel: '%(xvars)s'
# ylabel: 'Intensity'
# xvars: %(xvars)s
# yvars: %(yvars)s
# xlimits: %(xmin)s %(xmax)s
# filename: %(filename)s
# variables: %(variables)s
""".strip()
# Date format: Fri Aug 26 12:21:39 2011
date = datetime.strftime(datetime.now(), '%a %b %d %H %M %Y')
xvars = ', '.join(params)
lst = intervals[list(params)[0]]
xmin = min(lst)
xmax = max(lst)
# Get Numpoints from length of -L list
N = len(lst)
# ... or using options.numponts if in fact a normal scan
if options.numpoints:
N = options.numpoints
# TODO: figure out correct scan type
if options.optimize:
N = 1
title = 'Optimization of %s' % xvars
else:
title = 'Scan of %s' % xvars
scantype = 'multiarray_1d(%d)' % N
variables = list(params)
for detector in detectors:
variables += [detector + '_I', detector + '_ERR']
values = {
'instr': options.instr,
'date': date,
'ncount': options.ncount,
'numpoints': N,
'params': ', '.join('%s = %s' % (xvar, intervals[xvar][0])
for xvar in params),
'type': scantype,
'title': title,
'xvars': xvars,
'yvars': ' '.join('(%s_I,%s_ERR)' % (d, d) for d in detectors),
'xmin': xmin,
'xmax': xmax,
'filename': basename(options.optimise_file),
'variables': ' '.join(variables),
}
result = (template % values) + '\n'
return result
def build_mccodesim_header(options, intervals: dict, detectors: list, version: str):
template = """
begin instrument:
Creator: %(version)s
Source: %(instr)s
Parameters: %(xvars)s
Trace_enabled: %(istrace)s
Default_main: yes
Embedded_runtime: yes
end instrument
begin simulation
Date: %(date)s
Ncount: %(ncount)i
Numpoints: %(scanpoints)i
Param: %(params)s
end simulation
begin data
type: multiarray_1d(%(scanpoints)i)
title: %(title)s
xvars: %(xvars)s
yvars: %(yvars)s
xlabel: '%(xvars)s'
ylabel: 'Intensity'
xlimits: %(xmin)s %(xmax)s
filename: %(filename)s
variables: %(variables)s
end data
""".strip()
interval_names = ', '.join(intervals.keys())
first_key_interval = intervals[list(intervals.keys())[0]]
# TODO: figure out correct scan type
numpoints = 1 if options.optimize else options.numpoints
values = {
'instr': options.instr,
'date': datetime.strftime(datetime.now(), '%a %b %d %H %M %Y'),
'ncount': options.ncount,
'scanpoints': numpoints,
'params': ', '.join(f'{key} = {val}' for (key, vals) in intervals.items() for val in vals),
'type': f'multiarray_1d({numpoints})',
'title': f'{"Optimization" if options.optimize else "Scan"} of {interval_names}',
'xvars': interval_names,
'yvars': ' '.join(f'({d}_I,{d}_ERR' for d in detectors),
'xmin': min(first_key_interval),
'xmax': max(first_key_interval),
'filename': basename(options.optimise_file) or 'mccode.dat',
'variables': ' '.join(intervals.keys()) + ' '.join(f'{d}_I {d}_ERR' for d in detectors),
'version': version,
'istrace': 'yes' if options.trace else 'no'
}
result = (template % values) + '\n'
return result
def mcsimdetectors(directory_name: str):
"""Read back detector (name, intensity, error, ray count, data file name) sets from a mccode.sim file"""
# TODO this function should be kept synchronized with build_mccode_header above
from pathlib import Path
from mccode import Detector
directory = Path(directory_name)
if not directory.exists() and directory.is_dir():
raise RuntimeError(f"{directory_name} is not a directory")
filepath = directory.joinpath('mccode.sim')
hdfpath = directory.joinpath('mccode.h5')
if not filepath.exists() and hdfpath.exists():
return
if not filepath.exists():
raise RuntimeError(f'The simulation file {filepath} does not exist')
with filepath.open('r') as file:
contents = file.read()
# Each detector has a block between "begin data" and "end data"
blocks = [x.split('end data')[0].strip() for x in contents.split('begin data') if 'end data' in x]
# with lines of the form "{key}: {value}"
blocks = [{k.strip(): v.strip() for k, v in [z.split(':', 1) for z in b.split('\n')]} for b in blocks]
# This object only cares about extracting the (name, I, Err, N, data file) sets for each detector
return [Detector(d['component'], *d['values'].split(), d['filename'], d['statistics']) for d in blocks]
def point_at(N, key, minmax, step):
""" Helper to compute the point for key at step """
low, high = map(Decimal, minmax)
return step * (high - low) / Decimal(N - 1) + low
class LinearInterval:
""" Intervals for linear scanning """
@staticmethod
def from_range(N, intervals):
print(f"LinearInterval from {N=} and {intervals=}")
for step in range(N):
yield dict((key, point_at(N, key, intervals[key], step))
for key in intervals)
@staticmethod
def from_list(N, intervals):
print(f"LinearInterval from_list {N=} and {intervals=}")
for step in range(N):
yield dict((key, intervals[key][step]) for key in intervals)
class MultiInterval:
""" Points for multi-dimensional scanning """
@staticmethod
def from_range(N, intervals):
print(f"MultiInterval from {N=} and {intervals=}")
# base case: no intervals yields empty dict
if len(intervals) == 0:
yield {}
return
# recursively generate the multi dict
intervals = intervals.copy()
key, minmax = intervals.popitem()
for step in range(N):
point = point_at(N, key, minmax, step)
for dic in MultiInterval.from_range(N, intervals):
dic[key] = point
yield dic
class InvalidInterval(McRunException):
pass
class Scanner:
""" Perform a series of simulation steps along a given set of points """
def __init__(self, mcstas, intervals):
self.mcstas = mcstas
self.intervals = intervals
self.points = None
self.outfile = mcstas.options.optimise_file
self.simfile = join(mcstas.options.dir, 'mccode.sim')
def set_points(self, points):
self.points = points
def set_outfile(self, path):
self.outfile = path
def run(self):
LOG.info('Running Scanner, result file is "%s"' % self.outfile)
if len(self.intervals) == 0:
raise InvalidInterval('No interval range specified')
# each run will be in "dir/1", "dir/2", ...
mcstas_dir = self.mcstas.options.dir
if mcstas_dir == '':
mcstas_dir = '.'
with open(self.outfile, 'w') as outfile:
for i, point in enumerate(self.points):
par_values = []
for key in self.intervals:
self.mcstas.set_parameter(key, point[key])
LOG.debug("%s: %s", key, point[key])
par_values.append(point[key])
LOG.info(', '.join(f'{name}: {value}' for name, value in point.items()))
# Change subdirectory as an extra option (dir/1 -> dir/2)
current_dir = f'{mcstas_dir}/{i}'
LOG.info(f"Output step into scan directory {current_dir}")
self.mcstas.run(pipe=False, extra_opts={'dir': current_dir})
LOG.info("Finish running step, get detectors")
detectors = mcsimdetectors(current_dir)
if detectors is not None:
LOG.info("Got detectors")
if i == 0:
LOG.info("Write headers")
names = [det.name for det in detectors]
outfile.write(build_header(self.mcstas.options, self.intervals.keys(), self.intervals, names))
# Opening a file inside of this loop seems like a bad idea ... oh well
with open(self.simfile, 'w') as simfile:
simfile.write(build_mccodesim_header(self.mcstas.options, self.intervals, names,
version=self.mcstas.version))
LOG.info("Wrote headers")
LOG.info(f"Write step detectors line into {self.outfile}")
values = ['%s %s' % (d.intensity, d.error) for d in detectors]
line = '%s %s\n' % (' '.join(map(str, par_values)), ' '.join(values))
outfile.write(line)
outfile.flush()
class Optimizer:
""" Optimize monitors by varying the parameters within interval """
def __init__(self, mcstas, intervals):
self.mcstas = mcstas
self.intervals = intervals
self.points = None
self.outfile = mcstas.options.optimise_file # e.g. mccode.dat
self.simfile = join(mcstas.options.dir, 'mccode.sim')
self.iterations = 0
self.wrote_header = False
self.parsHistory = []
self.criteriaHistory = []
def run(self):
""" Optimization procedure """
LOG.info('Running Optimizer, result file is "%s"' % self.outfile)
if len(self.intervals) == 0:
raise InvalidInterval('No interval range specified')
# determine starting parameter set
pars_start, bounds = self.get_start()
# handle options
options={'disp':True}
if self.mcstas.options.optimize_maxiter:
options["maxiter"] = self.mcstas.options.optimize_maxiter
if self.mcstas.options.optimize_tol:
options["tol"] = self.mcstas.options.optimize_tol
# call scipy.optimize.minimize
try:
result = minimize(
McCode_runner, pars_start,
args = self,
method = self.mcstas.options.optimize_method,
bounds = bounds,
options= options)
except (NameError,ImportError) as err:
print("ERROR: mcrun --optimize is not available as scipy is not installed.")
raise err
# estimate uncertainties
uncertainties = self.estimate_error_history(self.criteriaHistory, result.x, self.parsHistory)
LOG.info("Parameter uncertainties:\n")
for i,key in enumerate(self.intervals):
LOG.info('%s = %f ± %f'% (key, result.x[i], uncertainties[i]))
def get_start(self):
""" Get starting parameters from the instrument parameters intervals """
pars_start = []
bounds = []
# we iterate on intervals.keys() and .values()
for key in self.intervals:
values=self.intervals[key]
values = [float(x) for x in values]
if len(values) == 2:
pars_start.append((values[0]+values[1])/2)
par_min = values[0]
par_max = values[1]
elif len(values) == 3:
pars_start.append(values[1])
par_min = values[0]
par_max = values[2]
else:
raise InvalidInterval('Optimization interval for %s must be min,max or min,start,max' % key)
bounds.append( (par_min,par_max) )
return pars_start, bounds
def estimate_error_history(self, criteriaHistory, parsBest, parsHistory):
""" Estimate errors from the history """
criteriaHistory = [float(x) for x in criteriaHistory]
parsHistoryUncertainty = parsBest*0
parsWeightSum = 0
minCriteria = min(criteriaHistory)
for index in range(len(parsHistory)):
# difference of parameters around optimum
delta_pars = parsHistory[index] - parsBest
# Gaussian weighting for the parameter set
weight_pars = exp(-((criteriaHistory[index]-minCriteria))**2 / 8)
parsWeightSum = parsWeightSum+weight_pars
parsHistoryUncertainty = parsHistoryUncertainty + (delta_pars*delta_pars*weight_pars)
# sqrt(sum(delta_pars.*delta_pars.*weight_pars)./sum(weight_pars))
parsHistoryUncertainty = sqrt(parsHistoryUncertainty/parsWeightSum)
return parsHistoryUncertainty
# ------------------------------------------------------------------------------
def McCode_runner(x, args):
""" Launch a single optimization step, calling McStas.run() """
# Change subdirectory as an extra option (dir/1 -> dir/2)
# each run will be in "dir/1", "dir/2", ...
mcstas_dir = args.mcstas.options.dir
if mcstas_dir == '':
mcstas_dir ='.'
current_dir = '%s/%i' % (mcstas_dir, args.iterations)
# must now set instrument parameters to 'x'
for index,key in enumerate(args.intervals):
args.mcstas.set_parameter(key, x[index])
args.parsHistory.append(x)
args.mcstas.run(pipe=False, extra_opts={'dir': current_dir})
# track iteration number
args.iterations = args.iterations+1
# get monitors out, compute criteria
detectors = mcsimdetectors(current_dir)
values = []
# add monitors that match a given name
for d in detectors:
if d.name in args.mcstas.options.optimize_monitor:
if args.mcstas.options.optimize_eval:
values.append(eval(args.mcstas.options.optimize_eval))
else:
values.append(d.intensity)
# in case monitor name is not found, we use all monitor values
if len(values) == 0:
for d in detectors:
if args.mcstas.options.optimize_eval:
values.append(eval(args.mcstas.options.optimize_eval))
else:
values.append(d.intensity)
values = [float(d) for d in values]
# open output files
mode = 'a' if args.wrote_header else 'w'
with open(args.outfile, mode) as outfile:
# output files (close)
if not args.wrote_header:
names = [det.name for det in detectors]
outfile.write(build_header(args.mcstas.options, args.intervals.keys(), args.intervals, names))
with open(args.simfile, mode) as simfile:
simfile.write(build_mccodesim_header(args.mcstas.options, args.intervals, names,
version=args.mcstas.version))
args.wrote_header = True
outfile.write(f"{' '.join(map(str, x))} {' '.join(f'{d.intensity} {d.error}' for d in detectors)}\n")
outfile.flush()
if args.mcstas.options.optimize_minimize:
criteria = sum(values) # minimize
else:
criteria = -sum(values) # maximize
args.criteriaHistory.append(criteria)
return criteria
|