File: ESS_moderator_long.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (460 lines) | stat: -rw-r--r-- 19,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*******************************************************************************
*
* Mcstas, neutron ray-tracing package
*         Copyright (C) 1997-2012, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: ESS_moderator_long
*
* %I
* Written by: KL, February 2001
* Modified by: E Klinkby, October 2012 - updated geometry, bispectral
* Version: $Revision: 1.25 $
* Origin: Risoe
* Release: McStas CVS_080803
*
* A parametrised pulsed source for modelling ESS long pulses.
*
* %D
* Produces a time-of-flight spectrum, from the ESS parameters
* Chooses evenly in lambda, evenly/exponentially decaying in time
* Adapted from Moderator by: KN, M.Hagen, August 1998
*
* 2012-updates:
* <ol>
* <li>Geometry is now MCNPX-like <b>IMPORTANT</b>: Origin of the component is inside the cylindrical 
* moderator, i.e. take care when positioning the next components! (E Klinkby)
* <li>Component implements both the cold moderator and the thermal (pre-)moderator, fraction of statistics for
* the cold moderator is the new cold_frac parameter. New set of input parameters with subscript _t defines the
* thermal flux.(E Klinkby)
* <li><b>IMPORTANT</b>: The thermal flux corresponds to the 2001 thermal ESS moderator as no update has currently
* been released from the ESS neutronics group.
* <li>By default the component applies a wavelength-dependent correction term to the cold flux, derived from 
* 2012 MCNPX calculations by ESS neutronics group. Corrections calculated by K Lieutenant (Vitess) and 
* implemented here by E Klinkby. In case this is not wanted, the src_2012 parameter can be set to 0.
* <li>Default cold moderator intensity parameters correspond to the "ESS 2012" parameter set. The original 
* 2001 ESS "Mezei moderator" can be described by setting T=50, tau=287e-6, tau1=0, tau2=20e-6, chi2=0.9, I0=6.9e11, 
* I2=27.6e10, branch1=0, branch2=0.5, src_2012=0
* <li>The component can use target_index for focusing to a given beam port. Use an Arm() and ROTATED to position 
* relatively to the moderator.
* <li>Time focusing option: Adjusts neutron departure time to match a 'first chopper' defined by parameters tfocus_dist, tfocus_time, tfocus_width (K Lefmann). 
* </ol>
*
* Units of flux: n/cm^2/s/AA/ster
* (McStas units are in general neutrons/second)
*
* Example general parameters (general):
*          size=0.12 Lmin=0.1 Lmax=10 dist=1.6 focus_xw=0.19 focus_yh=0.15 nu=16.67
*
* Example moderator specific parameters
* (From F. Mezei, "ESS reference moderator characteristics for ...", 4/12/00:
*  Defining the normalised Maxwellian
*     M(lam,T) = 2 a^2 lam^-5 exp(-a/lam^2); a=949/T; lam in AA; T in K,
*   the "pulse integral" function
*     iexp(t,tau,d) = 0                              ; t<0
*                     tau (1-exp(-t/tau))            ; 0<t<d
*                     tau (exp(d/tau)-1) exp(-t/tau) ; t>d ,
*   and the long pulse shape function
*     I(t,tau,n,d) = (iexp(t,tau,d)-iexp(t,tau/n,d)) n/(n-1)/tau/d ,
*
*   the flux distribution is given as
*     Phi(t,lam) =  I0 M(lam,T) F(t,tau,n)
*                 + I2/(1+exp(chi2 lam-2.2))/lam*F(t,tau2*lam,n2)  )
*
*   c1: Ambient H20, long pulse, coupled <b>ESS 2001 thermal</b>
*          T_t=325 tau_t=80e-6 tau1_t=400e-6 tau2_t=12e-6 n=20 n2=5 d=2e-3 chi2_t=2.5
*          I0_t=13.5e11 I2_t=27.6e10    branch1_t=0.5 branch2_t=0.5
*
*   c2: Liquid H2, long pulse, coupled <b>ESS 2012 cold</b>
*          T=50 tau=287e-6 tau1=0 tau2=20e-6 n=20 n2=5 d=2e-3 chi2=0.9
*          I0=8.21e11, I2=3.29e11    branch1=0 branch2=0.5
*
* Debugged intensively against Mezei note (4/12 2000) and VitESS @ Rencurel 2006.
* The output is now neutrons / second, not as previously neutrons / pulse.
*
* %VALIDATION 
* Validated against VitESS and Mezei note (4/12 2000) @ Rencurel 2006
*
* %P
* Input parameters:
*
* size:   (m)    Height of the cylindershaped cold source
* cyl_radius:(m) Radius of the cylindershaped cold source
* width_t: (m)    Edge of cube shaped thermal source
* Lmin:   (AA)   Lower edge of wavelength distribution
* Lmax:   (AA)   Upper edge of wavelength distribution
* dist:   (m)    Distance from source to focusing rectangle; at (0,0,dist)
* focus_xw:(m)   Width of focusing rectangle
* focus_yh:(m)   Height of focusing rectangle
* target_index:(1)  relative index of component to focus at, e.g. next is +1
*                this is used to compute 'dist' automatically.
* nu:     (Hz)   Frequency of pulses
* T:      (K)    Temperature of cold source
* T_t:    (K)    Temperature of thermal source
* tau:    (s)    long time decay constant for cold pulse tail 1a
* tau_t:  (s)    long time decay constant for thermal pulse tail 1a
* tau1:   (s)    long time decay constant for cold pulse tail 1b
* tau1_t: (s)    long time decay constant for thermal pulse tail 1b
* tau2:   (s)    long time decay constant for cold pulse, 2
* tau2_t:   (s)    long time decay constant for thermal pulse, 2
* d:      (s)    pulse length
* n:      (1)    pulse shape parameter, 1
* n2:     (1)    pulse shape parameter, 2
* chi2:   (1/AA) lambda-distribution parameter in cold pulse 2
* chi2_t: (1/AA) lambda-distribution parameter in thermal pulse 2
* I0:     (flux) integrated cold flux, 1 (in flux units, see above)
* I0_t:   (flux) integrated thermal flux, 1 (in flux units, see above)
* I2:     (flux) Cold flux, 2 (in flux units, see above)
* I2_t:   (flux) Thermal flux, 2 (in flux units, see above)
* branch1: (1)   limit for switching between two time structures in
                 cold distribution 1 (only for coupled water, else = 1)
* branch1_t: (1) limit for switching between two time structures in
                 thermal distribution 1 (only for coupled water, else = 1)
* branch2: (1)   limit for switching between cold distribution 1 and 2.
*                (default value 0.5)
* branch2_t: (1) limit for switching between thermal distribution 1 and 2.
*                (default value 0.5)
* branch_tail: (1)   limit for switching between pulse and tail
*                (suggested value: tau/d - default defined this way)
* n_pulses: (1)  Number of pulses simulated. 0 and 1 creates one pulse. 
*                The integrated intensity is constant 
* cold_frac: (1) Fraction of neutron statistics from cold source. It is implicitely assumed 
*                that supermirror allows each beamline to choose the desired fraction
*                of cold and thermal neutrons (i.e. extreme idealization).
* src_2012:  (bool) Flag to apply 2012 MCNPX-derived, wavelenght-dependent correction to intensity 
*                from the cold moderator.
* tfocus_dist: (m) Position of time window
* tfocus_time: (s) Time position of window
* tfocus_width: (s) Time width of window
* beamport_angle: (deg) Direction within the beamport sector (0 < angle < 60) to direct neutrons
*
* %E
*******************************************************************************/

DEFINE COMPONENT ESS_moderator_long
DEFINITION PARAMETERS ()
  SETTING PARAMETERS (width_c=0, yheight=0.12, Lmin, Lmax, dist=0, focus_xw, focus_yh, nu=14,
                    T=50, tau=287e-6, tau1=0, tau2=20e-6, d=2.857e-3, n=20, cold_frac=1.0,
                    n2=5, chi2=0.9, I0=8.21e11, I2=3.29e11, int target_index=0, 
		    cyl_radius=0.085, branch1=1, branch2=0.5, branch_tail=0.14350,
		    int n_pulses=1, width_t=0.12, T_t=325, tau_t=80e-6, tau1_t=400e-6,
		    tau2_t=12e-6, chi2_t=2.5, I0_t=13.5e11, I2_t=27.6e10, branch1_t=0.5,
		    branch2_t=0.5, int src_2012=1, tfocus_dist=0.1, tfocus_time=0.0, tfocus_width=0.0, beamport_angle=30)
OUTPUT PARAMETERS (M, F, l_range, w_mult, w_geom, w_geom, w_geom_t)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ 
DECLARE
%{
  double l_range, w_mult, w_geom, w_geom_c, w_geom_t;
  double tx,ty,tz;
  double t1x,t1y,t1z,t2x,t2y,t2z;
  /* Neutron-specific distribution-shape variables */
  double T_n, tau_n, tau1_n, tau2_n, chi2_n, I0_n, I2_n, branch1_n, branch2_n;
  
  double M(double l, double temp)
    {
      double a=949.0/temp;
      return 2*a*a*exp(-a/(l*l))/(l*l*l*l*l);
    }

  double F(double t, double tau, int n)
    {
      return (exp(-t/tau)-exp(-n*t/tau))*n/(n-1)/tau;
    }
  
  /* Target station geometry... */
  double r_empty = 2.0; /* two meters from moderator surface and out... */
  double r_optics;
%}

INITIALIZE
%{
  n_pulses=(double)floor(n_pulses);
  if (n_pulses == 0) n_pulses=1;
 
  if (target_index && !dist)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &tx, &ty, &tz);
    dist=sqrt(tx*tx+ty*ty+tz*tz);
  } else if (target_index && !dist) {
    printf("ESS_moderator_long: %s: Please choose to set either the dist parameter or specify a target_index.\nExit\n", NAME_CURRENT_COMP);
    exit(-1);
  } else {
    tx=0, ty=0, tz=dist;
  }

  if (focus_xw < 0 || focus_yh < 0)
  {
    printf("ESS_moderator_long: %s: Please specify both focus_xw and focus_yh as positive numbers.\nExit\n", NAME_CURRENT_COMP);
    exit(-1);
  }

  if (dist < r_empty && dist > 0)
  {
    printf("ESS_moderator_long: %s WARNING: Provided dist parameter is %g and hence inside the vacated zone of the beam extraction system!\nYou might be placing optics in a restricted area!!!\n", NAME_CURRENT_COMP, dist);
  }
    
  if (beamport_angle < 0 || beamport_angle > 60)
  {
    printf("ESS_moderator_long: %s: Please select a beamport_angle between 0 and 60 degrees!\nExit\n", NAME_CURRENT_COMP);
    exit(-1);
  }
  
  if (width_c && cyl_radius) {
    printf("ESS_moderator_long: %s: Please specify EITHER cold-moderator radius (cyl_radius) or length of visible arch (width_c)!\nExit\n", NAME_CURRENT_COMP);
    exit(-1);
  } else if (cyl_radius) {
    width_c = 2*PI*cyl_radius*60/360;
  } else {
    cyl_radius = 360*width_c/(2*PI*60);
  }
  r_optics = 6.0 - r_empty - cyl_radius;

  if (n == 1 || n2 == 1 || Lmin<=0 || Lmax <=0 || dist == 0
    || branch2 == 0 || branch_tail == 0 || tau == 0)
  {
    printf("ESS_moderator_long: %s: Check parameters (lead to Math Error).\n Avoid 0 value for {Lmin Lmax dist d tau branch1/2/tail} and 1 value for {n n2 branch1/2/tail}\n", NAME_CURRENT_COMP);
    exit(-1);
  }

  if (tau1==0 && !(branch1==1)) {
    branch1=1;
    printf("ESS_moderator_long: %s: WARNING: Setting tau1 to zero implies branch 1=1.\n", NAME_CURRENT_COMP);
  }

  l_range = Lmax-Lmin;
  w_geom_c  = width_c*yheight*1.0e4;     /* source area correction */
  w_geom_t  = width_t*yheight*1.0e4;
  w_mult  = l_range;            /* wavelength range correction */
  w_mult *= 1.0/mcget_ncount();   /* Correct for number of rays */
  w_mult *= nu;               /* Correct for frequency */

  /* Calculate location of thermal wings wrt beamport_angle (z) direction */
  /* Wing 1 (left) is at -beamport_angle */
  t1z = cyl_radius*cos(-DEG2RAD*beamport_angle);
  t1x = cyl_radius*sin(-DEG2RAD*beamport_angle);
  t1y = 0;
  /* Wing 2 (right) is at 60-beamport_angle */
  t2z = cyl_radius*cos(DEG2RAD*(60-beamport_angle));
  t2x = cyl_radius*sin(DEG2RAD*(60-beamport_angle));
  t2y = 0;
  /* We want unit vectors... */
  NORM(t1x,t1y,t1z);
  NORM(t2x,t2y,t2z);
  
%}
TRACE
%{
  double v,tau_l,E,lambda,k,r,xf,yf,dx,dy,w_focus,tail_flag,cor,dt,xprime,yprime,zprime;

  /* Bispectral source - choice of spectrum and initial position */
  int cold = ( rand01() < cold_frac ) ? 1 : 0;

  /* Geometry adapted from ESS MCNPX model, mid 2012 */
  if (cold) {          //case: cold moderator
    double theta_tmp;
    
    //choose random point on cylinder surface
    theta_tmp = randpm1()*PI/6 + PI/2 + (- 30 + beamport_angle)*DEG2RAD;
        x     = cyl_radius * cos(theta_tmp);
        y     = 0.5*randpm1()*yheight;
        z     = cyl_radius * sin(theta_tmp);
 
    //spectrum related constants - ESS 2001 Cold moderator
    //T=50, tau=287e-6, tau1=0, tau2=20e-6, chi2=0.9, I0=6.9e11, I2=27.6e10, branch1=0, branch2=0.5;
    T_n=T; tau_n=tau; tau1_n=tau1; tau2_n=tau2; chi2_n=chi2; I0_n=I0; I2_n=I2; branch1_n=branch1; branch2_n=branch2;
    w_geom = w_geom_c;
  }  else  {                      //case: thermal moderator
    /* choose "left" or "right" thermal wing */
    int isleft = ( rand01() < 0.5 ) ? 1 : 0;
    double poshorz, posvert;
    
    poshorz = cyl_radius+rand01()*width_t;
    posvert = 0.5*randpm1()*yheight;
    
    if (isleft) {
      x = t1x * poshorz;
      z = t1z * poshorz;
    } else {
      x = t2x * poshorz;
      z = t2z * poshorz;
    }
    y = posvert;
    
    /* x = cyl_radius + width_t*rand01(); */
    /* y = 0.5*randpm1()*width_t; */
    /* z = cyl_radius; */

    //spectrum related constants - ESS 2001 Thermal moderator       
    //T_t=325, tau_t=80e-6, tau1_t=400e-6, tau2_t=12e-6, chi2_t=2.5, I0_t=13.5e11, I2_t=27.6e10, branch1_t=0.5, branch2_t=0.5;
    T_n=T_t; tau_n=tau_t; tau1_n=tau1_t; tau2_n=tau2_t; chi2_n=chi2_t; I0_n=I0_t; I2_n=I2_t; branch1_n=branch1_t; branch2_n=branch2_t;
    w_geom = w_geom_t;
  }

  randvec_target_rect_real(&xf, &yf, &r, &w_focus,
			   tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);
 
  dx = xf-x;
  dy = yf-y;
  r = sqrt(dx*dx+dy*dy+dist*dist);

  lambda = Lmin+l_range*rand01();    /* Choose from uniform distribution */
  k = 2*PI/lambda;
  v = K2V*k;

  vz = v*dist/r;
  vy = v*dy/r;
  vx = v*dx/r;

  /* Determine delta-t needed to reach first chopper */
  if (tfocus_width>0) {
    dt = tfocus_dist/vz;			/* Flight time to time window (chopper) */
  }
  tail_flag = (rand01()<branch_tail);   /* Choose tail/bulk */
 if (tail_flag)
 {
  if (rand01() < branch2_n)
  {
    if (tau1_n>0)
      if (rand01() < branch1_n)     /* Quick and dirty non-general solution */
      {  /* FIRST CASE a */
        tau_l = tau_n;
        p = 1/(branch1_n*branch2_n*branch_tail); /* Correct for switching prob. */
      }
      else
      {  /* FIRST CASE b */
        tau_l = tau1_n;
        p = 1/((1-branch1_n)*branch2_n*branch_tail); /* Correct for switching prob. */
      }
    else
      {
        tau_l = tau_n;
        p = 1/(branch2_n*branch_tail); /* Correct for switching prob. */
      }
    t = -tau_l*log(1e-12+rand01());       /* Sample from long-time tail a */
    /* Correct for true pulse shape */
    p *= w_focus;                         /* Correct for target focusing */
    p *= tau_l/d;                         /* Correct for tail part */
    p *= I0_n*w_mult*w_geom*M(lambda,T_n);           /* Calculate true intensity */
  }
  else
  {
    /* SECOND CASE */
    tau_l = tau2_n*lambda;
    t = -tau_l*log(1e-12+rand01());       /* Sample from long-time tail */
    p = n2/(n2-1)*((1-exp(-d/tau_l))-(1-exp(-n2*d/tau_l))*exp(-(n2-1)*t/tau_l)/n);
                                          /* Correct for true pulse shape */
    p /= (1-branch2_n)*branch_tail;          /* Correct for switching prob. */
    p *= tau_l/d;                         /* Correct for tail part */
    p *= w_focus;                         /* Correct for target focusing */
    p *= I2_n*w_mult*w_geom/(1+exp(chi2_n*lambda-2.2))/lambda;                                         /* Calculate true intensity */
  }
  t += d;                                 /* Add pulse length */
 }
 else /* Tail-flag */
 {
   if (tfocus_width>0) {
     t = tfocus_time-dt;                    /* Set time to hit time window center */
     t += randpm1()*tfocus_width/2.0;       /* Add random time within window width */
   } else {
     t = d*rand01();                        /* Sample from bulk pulse */
   }
  if (t<0) ABSORB;                       /* Kill neutron if outside pulse duration */
  if (t>d) ABSORB;
  if (rand01() < branch2_n)
  {
    if (rand01() < branch1_n)     /* Quick and dirty non-general solution */
    {  /* FIRST CASE a */
      tau_l = tau_n;
      p = 1/(branch1_n*branch2_n*(1-branch_tail)); /* Correct for switching prob. */
    }
    else
    {  /* FIRST CASE b */
      tau_l = tau1_n;
      p = 1/((1-branch1_n)*branch2_n*(1-branch_tail)); /* Correct for switching prob. */
    }
    p *= 1-n/(n-1)*(exp(-t/tau_l)-exp(-n*t/tau_l)/n); /* Correct for true pulse shape */
    p *= w_focus;                         /* Correct for target focusing */
    if (tfocus_width>0) {
      p *= tfocus_width/d;    	  	  /* Correct for time focusing */
    }
    p *= I0_n*w_mult*w_geom*M(lambda,T_n);       /* Calculate true intensity */
   }
  else
  {
    /* SECOND CASE */
    tau_l = tau2_n*lambda;
    p = 1-n2/(n2-1)*(exp(-t/tau_l)-exp(-n2*t/tau_l)/n2); /* Correct for true pulse shape */
    p /= (1-branch2_n)*(1-branch_tail);   /* Correct for switching prob. */
    p *= w_focus;                         /* Correct for target focusing */
    if (tfocus_width) {
      p *= tfocus_width/d;    		  /* Correct for time focusing */
    }
    p *= I2_n*w_mult*w_geom/(1+exp(chi2_n*lambda-2.2))/lambda;    /* Calculate true intensity */
  }
 }

 if (cold && src_2012) {
   /* Correction factors to converts 'predicted' spectrum from cold moderator to the one observed in MCNPX */
   if (lambda<=2.5) cor=log(1.402+0.898*lambda)*(2.0776-4.1093*lambda+4.8836*pow(lambda,2)-2.4715*pow(lambda,3)+0.4521*pow(lambda,4));
   else if (lambda <= 3.5) cor = log(1.402 + 0.898*lambda)*(4.3369 - 1.8367*lambda + 0.2524*pow(lambda,2) );
   else if (lambda  > 3.5) cor = log(1.402 + 0.898*lambda);
 } else {
   /* Thermal (pre-)moderator, i.e. no correction */
   cor = 1.0;
 }
 p *= cor;
 
 t+=(double)floor((n_pulses)*rand01())/nu;   /* Select a random pulse */

 
%}

MCDISPLAY
%{

  /* Draw cold moderator as cylinder */
  
  circle("xz", 0,  yheight/2.0, 0, cyl_radius);
  circle("xz", 0,  -yheight/2.0, 0, cyl_radius);
  line(0, -yheight/2.0, cyl_radius, 0, yheight/2.0, cyl_radius);
  line(0, -yheight/2.0, -cyl_radius, 0, yheight/2.0, -cyl_radius);
  line(cyl_radius, yheight/2.0, 0, cyl_radius, yheight/2.0, 0);  
  line(-cyl_radius, -yheight/2.0, 0, -cyl_radius, yheight/2.0, 0);
  /* Draw thermal moderators as a couple of squares + some lines */
  // Left
  multiline(4, t1x*cyl_radius, -yheight/2.0, t1z*cyl_radius,
	    t1x*(cyl_radius + width_t), -yheight/2.0, t1z*(cyl_radius + width_t),
      	    t1x*(cyl_radius + width_t), yheight/2.0,  t1z*(cyl_radius + width_t),
	    t1x*cyl_radius, yheight/2.0, t1z*cyl_radius);
	    // Right
  multiline(4, t2x*cyl_radius, -yheight/2.0, t2z*cyl_radius,
	    t2x*(cyl_radius + width_t), -yheight/2.0, t2z*(cyl_radius + width_t),
      	    t2x*(cyl_radius + width_t), yheight/2.0,  t2z*(cyl_radius + width_t),
	    t2x*cyl_radius, yheight/2.0, t2z*cyl_radius);
  
  /* Dashed lines for indicating "beam extraction" area... */
  dashed_line(t1x*cyl_radius, -yheight/2.0, t1z*cyl_radius, t1x*r_empty, -yheight/2.0, t1z*r_empty,10);
  dashed_line(t1x*cyl_radius, yheight/2.0, t1z*cyl_radius, t1x*r_empty, yheight/2.0, t1z*r_empty,10);
  dashed_line(t2x*cyl_radius, -yheight/2.0, t2z*cyl_radius, t2x*r_empty, -yheight/2.0, t2z*r_empty,5);
  dashed_line(t2x*cyl_radius, yheight/2.0, t2z*cyl_radius, t2x*r_empty, yheight/2.0, t2z*r_empty,5);

  /* Circles indicating extent of the "empty" zone where optics is not allowed */
  circle("xz", 0,  yheight/2.0, 0, r_empty);
  circle("xz", 0,  -yheight/2.0, 0, r_empty);

  /* Circles indicating the builk shielding of the target monolith at 6 m */
  circle("xz", 0,  focus_yh/2.0 , 0, 6);
  circle("xz", 0, -focus_yh/2.0 , 0, 6);
  circle("xz", 0,  2, 0, 6);
  circle("xz", 0, -2, 0, 6);
  
  /* Rectangle indicating the chosen focus rectangle - where the optics starts... */
  rectangle("xy",tx,ty,tz,focus_xw,focus_yh);

%}

END