1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
/*******************************************************************************
*
* Mcstas, neutron ray-tracing package
* Copyright (C) 1997-2012, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: ESS_moderator_long
*
* %I
* Written by: KL, February 2001
* Modified by: E Klinkby, October 2012 - updated geometry, bispectral
* Version: $Revision: 1.25 $
* Origin: Risoe
* Release: McStas CVS_080803
*
* A parametrised pulsed source for modelling ESS long pulses.
*
* %D
* Produces a time-of-flight spectrum, from the ESS parameters
* Chooses evenly in lambda, evenly/exponentially decaying in time
* Adapted from Moderator by: KN, M.Hagen, August 1998
*
* 2012-updates:
* <ol>
* <li>Geometry is now MCNPX-like <b>IMPORTANT</b>: Origin of the component is inside the cylindrical
* moderator, i.e. take care when positioning the next components! (E Klinkby)
* <li>Component implements both the cold moderator and the thermal (pre-)moderator, fraction of statistics for
* the cold moderator is the new cold_frac parameter. New set of input parameters with subscript _t defines the
* thermal flux.(E Klinkby)
* <li><b>IMPORTANT</b>: The thermal flux corresponds to the 2001 thermal ESS moderator as no update has currently
* been released from the ESS neutronics group.
* <li>By default the component applies a wavelength-dependent correction term to the cold flux, derived from
* 2012 MCNPX calculations by ESS neutronics group. Corrections calculated by K Lieutenant (Vitess) and
* implemented here by E Klinkby. In case this is not wanted, the src_2012 parameter can be set to 0.
* <li>Default cold moderator intensity parameters correspond to the "ESS 2012" parameter set. The original
* 2001 ESS "Mezei moderator" can be described by setting T=50, tau=287e-6, tau1=0, tau2=20e-6, chi2=0.9, I0=6.9e11,
* I2=27.6e10, branch1=0, branch2=0.5, src_2012=0
* <li>The component can use target_index for focusing to a given beam port. Use an Arm() and ROTATED to position
* relatively to the moderator.
* <li>Time focusing option: Adjusts neutron departure time to match a 'first chopper' defined by parameters tfocus_dist, tfocus_time, tfocus_width (K Lefmann).
* </ol>
*
* Units of flux: n/cm^2/s/AA/ster
* (McStas units are in general neutrons/second)
*
* Example general parameters (general):
* size=0.12 Lmin=0.1 Lmax=10 dist=1.6 focus_xw=0.19 focus_yh=0.15 nu=16.67
*
* Example moderator specific parameters
* (From F. Mezei, "ESS reference moderator characteristics for ...", 4/12/00:
* Defining the normalised Maxwellian
* M(lam,T) = 2 a^2 lam^-5 exp(-a/lam^2); a=949/T; lam in AA; T in K,
* the "pulse integral" function
* iexp(t,tau,d) = 0 ; t<0
* tau (1-exp(-t/tau)) ; 0<t<d
* tau (exp(d/tau)-1) exp(-t/tau) ; t>d ,
* and the long pulse shape function
* I(t,tau,n,d) = (iexp(t,tau,d)-iexp(t,tau/n,d)) n/(n-1)/tau/d ,
*
* the flux distribution is given as
* Phi(t,lam) = I0 M(lam,T) F(t,tau,n)
* + I2/(1+exp(chi2 lam-2.2))/lam*F(t,tau2*lam,n2) )
*
* c1: Ambient H20, long pulse, coupled <b>ESS 2001 thermal</b>
* T_t=325 tau_t=80e-6 tau1_t=400e-6 tau2_t=12e-6 n=20 n2=5 d=2e-3 chi2_t=2.5
* I0_t=13.5e11 I2_t=27.6e10 branch1_t=0.5 branch2_t=0.5
*
* c2: Liquid H2, long pulse, coupled <b>ESS 2012 cold</b>
* T=50 tau=287e-6 tau1=0 tau2=20e-6 n=20 n2=5 d=2e-3 chi2=0.9
* I0=8.21e11, I2=3.29e11 branch1=0 branch2=0.5
*
* Debugged intensively against Mezei note (4/12 2000) and VitESS @ Rencurel 2006.
* The output is now neutrons / second, not as previously neutrons / pulse.
*
* %VALIDATION
* Validated against VitESS and Mezei note (4/12 2000) @ Rencurel 2006
*
* %P
* Input parameters:
*
* size: (m) Height of the cylindershaped cold source
* cyl_radius:(m) Radius of the cylindershaped cold source
* width_t: (m) Edge of cube shaped thermal source
* Lmin: (AA) Lower edge of wavelength distribution
* Lmax: (AA) Upper edge of wavelength distribution
* dist: (m) Distance from source to focusing rectangle; at (0,0,dist)
* focus_xw:(m) Width of focusing rectangle
* focus_yh:(m) Height of focusing rectangle
* target_index:(1) relative index of component to focus at, e.g. next is +1
* this is used to compute 'dist' automatically.
* nu: (Hz) Frequency of pulses
* T: (K) Temperature of cold source
* T_t: (K) Temperature of thermal source
* tau: (s) long time decay constant for cold pulse tail 1a
* tau_t: (s) long time decay constant for thermal pulse tail 1a
* tau1: (s) long time decay constant for cold pulse tail 1b
* tau1_t: (s) long time decay constant for thermal pulse tail 1b
* tau2: (s) long time decay constant for cold pulse, 2
* tau2_t: (s) long time decay constant for thermal pulse, 2
* d: (s) pulse length
* n: (1) pulse shape parameter, 1
* n2: (1) pulse shape parameter, 2
* chi2: (1/AA) lambda-distribution parameter in cold pulse 2
* chi2_t: (1/AA) lambda-distribution parameter in thermal pulse 2
* I0: (flux) integrated cold flux, 1 (in flux units, see above)
* I0_t: (flux) integrated thermal flux, 1 (in flux units, see above)
* I2: (flux) Cold flux, 2 (in flux units, see above)
* I2_t: (flux) Thermal flux, 2 (in flux units, see above)
* branch1: (1) limit for switching between two time structures in
cold distribution 1 (only for coupled water, else = 1)
* branch1_t: (1) limit for switching between two time structures in
thermal distribution 1 (only for coupled water, else = 1)
* branch2: (1) limit for switching between cold distribution 1 and 2.
* (default value 0.5)
* branch2_t: (1) limit for switching between thermal distribution 1 and 2.
* (default value 0.5)
* branch_tail: (1) limit for switching between pulse and tail
* (suggested value: tau/d - default defined this way)
* n_pulses: (1) Number of pulses simulated. 0 and 1 creates one pulse.
* The integrated intensity is constant
* cold_frac: (1) Fraction of neutron statistics from cold source. It is implicitely assumed
* that supermirror allows each beamline to choose the desired fraction
* of cold and thermal neutrons (i.e. extreme idealization).
* src_2012: (bool) Flag to apply 2012 MCNPX-derived, wavelenght-dependent correction to intensity
* from the cold moderator.
* tfocus_dist: (m) Position of time window
* tfocus_time: (s) Time position of window
* tfocus_width: (s) Time width of window
* beamport_angle: (deg) Direction within the beamport sector (0 < angle < 60) to direct neutrons
*
* %E
*******************************************************************************/
DEFINE COMPONENT ESS_moderator_long
DEFINITION PARAMETERS ()
SETTING PARAMETERS (width_c=0, yheight=0.12, Lmin, Lmax, dist=0, focus_xw, focus_yh, nu=14,
T=50, tau=287e-6, tau1=0, tau2=20e-6, d=2.857e-3, n=20, cold_frac=1.0,
n2=5, chi2=0.9, I0=8.21e11, I2=3.29e11, int target_index=0,
cyl_radius=0.085, branch1=1, branch2=0.5, branch_tail=0.14350,
int n_pulses=1, width_t=0.12, T_t=325, tau_t=80e-6, tau1_t=400e-6,
tau2_t=12e-6, chi2_t=2.5, I0_t=13.5e11, I2_t=27.6e10, branch1_t=0.5,
branch2_t=0.5, int src_2012=1, tfocus_dist=0.1, tfocus_time=0.0, tfocus_width=0.0, beamport_angle=30)
OUTPUT PARAMETERS (M, F, l_range, w_mult, w_geom, w_geom, w_geom_t)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
double l_range, w_mult, w_geom, w_geom_c, w_geom_t;
double tx,ty,tz;
double t1x,t1y,t1z,t2x,t2y,t2z;
/* Neutron-specific distribution-shape variables */
double T_n, tau_n, tau1_n, tau2_n, chi2_n, I0_n, I2_n, branch1_n, branch2_n;
double M(double l, double temp)
{
double a=949.0/temp;
return 2*a*a*exp(-a/(l*l))/(l*l*l*l*l);
}
double F(double t, double tau, int n)
{
return (exp(-t/tau)-exp(-n*t/tau))*n/(n-1)/tau;
}
/* Target station geometry... */
double r_empty = 2.0; /* two meters from moderator surface and out... */
double r_optics;
%}
INITIALIZE
%{
n_pulses=(double)floor(n_pulses);
if (n_pulses == 0) n_pulses=1;
if (target_index && !dist)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
} else if (target_index && !dist) {
printf("ESS_moderator_long: %s: Please choose to set either the dist parameter or specify a target_index.\nExit\n", NAME_CURRENT_COMP);
exit(-1);
} else {
tx=0, ty=0, tz=dist;
}
if (focus_xw < 0 || focus_yh < 0)
{
printf("ESS_moderator_long: %s: Please specify both focus_xw and focus_yh as positive numbers.\nExit\n", NAME_CURRENT_COMP);
exit(-1);
}
if (dist < r_empty && dist > 0)
{
printf("ESS_moderator_long: %s WARNING: Provided dist parameter is %g and hence inside the vacated zone of the beam extraction system!\nYou might be placing optics in a restricted area!!!\n", NAME_CURRENT_COMP, dist);
}
if (beamport_angle < 0 || beamport_angle > 60)
{
printf("ESS_moderator_long: %s: Please select a beamport_angle between 0 and 60 degrees!\nExit\n", NAME_CURRENT_COMP);
exit(-1);
}
if (width_c && cyl_radius) {
printf("ESS_moderator_long: %s: Please specify EITHER cold-moderator radius (cyl_radius) or length of visible arch (width_c)!\nExit\n", NAME_CURRENT_COMP);
exit(-1);
} else if (cyl_radius) {
width_c = 2*PI*cyl_radius*60/360;
} else {
cyl_radius = 360*width_c/(2*PI*60);
}
r_optics = 6.0 - r_empty - cyl_radius;
if (n == 1 || n2 == 1 || Lmin<=0 || Lmax <=0 || dist == 0
|| branch2 == 0 || branch_tail == 0 || tau == 0)
{
printf("ESS_moderator_long: %s: Check parameters (lead to Math Error).\n Avoid 0 value for {Lmin Lmax dist d tau branch1/2/tail} and 1 value for {n n2 branch1/2/tail}\n", NAME_CURRENT_COMP);
exit(-1);
}
if (tau1==0 && !(branch1==1)) {
branch1=1;
printf("ESS_moderator_long: %s: WARNING: Setting tau1 to zero implies branch 1=1.\n", NAME_CURRENT_COMP);
}
l_range = Lmax-Lmin;
w_geom_c = width_c*yheight*1.0e4; /* source area correction */
w_geom_t = width_t*yheight*1.0e4;
w_mult = l_range; /* wavelength range correction */
w_mult *= 1.0/mcget_ncount(); /* Correct for number of rays */
w_mult *= nu; /* Correct for frequency */
/* Calculate location of thermal wings wrt beamport_angle (z) direction */
/* Wing 1 (left) is at -beamport_angle */
t1z = cyl_radius*cos(-DEG2RAD*beamport_angle);
t1x = cyl_radius*sin(-DEG2RAD*beamport_angle);
t1y = 0;
/* Wing 2 (right) is at 60-beamport_angle */
t2z = cyl_radius*cos(DEG2RAD*(60-beamport_angle));
t2x = cyl_radius*sin(DEG2RAD*(60-beamport_angle));
t2y = 0;
/* We want unit vectors... */
NORM(t1x,t1y,t1z);
NORM(t2x,t2y,t2z);
%}
TRACE
%{
double v,tau_l,E,lambda,k,r,xf,yf,dx,dy,w_focus,tail_flag,cor,dt,xprime,yprime,zprime;
/* Bispectral source - choice of spectrum and initial position */
int cold = ( rand01() < cold_frac ) ? 1 : 0;
/* Geometry adapted from ESS MCNPX model, mid 2012 */
if (cold) { //case: cold moderator
double theta_tmp;
//choose random point on cylinder surface
theta_tmp = randpm1()*PI/6 + PI/2 + (- 30 + beamport_angle)*DEG2RAD;
x = cyl_radius * cos(theta_tmp);
y = 0.5*randpm1()*yheight;
z = cyl_radius * sin(theta_tmp);
//spectrum related constants - ESS 2001 Cold moderator
//T=50, tau=287e-6, tau1=0, tau2=20e-6, chi2=0.9, I0=6.9e11, I2=27.6e10, branch1=0, branch2=0.5;
T_n=T; tau_n=tau; tau1_n=tau1; tau2_n=tau2; chi2_n=chi2; I0_n=I0; I2_n=I2; branch1_n=branch1; branch2_n=branch2;
w_geom = w_geom_c;
} else { //case: thermal moderator
/* choose "left" or "right" thermal wing */
int isleft = ( rand01() < 0.5 ) ? 1 : 0;
double poshorz, posvert;
poshorz = cyl_radius+rand01()*width_t;
posvert = 0.5*randpm1()*yheight;
if (isleft) {
x = t1x * poshorz;
z = t1z * poshorz;
} else {
x = t2x * poshorz;
z = t2z * poshorz;
}
y = posvert;
/* x = cyl_radius + width_t*rand01(); */
/* y = 0.5*randpm1()*width_t; */
/* z = cyl_radius; */
//spectrum related constants - ESS 2001 Thermal moderator
//T_t=325, tau_t=80e-6, tau1_t=400e-6, tau2_t=12e-6, chi2_t=2.5, I0_t=13.5e11, I2_t=27.6e10, branch1_t=0.5, branch2_t=0.5;
T_n=T_t; tau_n=tau_t; tau1_n=tau1_t; tau2_n=tau2_t; chi2_n=chi2_t; I0_n=I0_t; I2_n=I2_t; branch1_n=branch1_t; branch2_n=branch2_t;
w_geom = w_geom_t;
}
randvec_target_rect_real(&xf, &yf, &r, &w_focus,
tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);
dx = xf-x;
dy = yf-y;
r = sqrt(dx*dx+dy*dy+dist*dist);
lambda = Lmin+l_range*rand01(); /* Choose from uniform distribution */
k = 2*PI/lambda;
v = K2V*k;
vz = v*dist/r;
vy = v*dy/r;
vx = v*dx/r;
/* Determine delta-t needed to reach first chopper */
if (tfocus_width>0) {
dt = tfocus_dist/vz; /* Flight time to time window (chopper) */
}
tail_flag = (rand01()<branch_tail); /* Choose tail/bulk */
if (tail_flag)
{
if (rand01() < branch2_n)
{
if (tau1_n>0)
if (rand01() < branch1_n) /* Quick and dirty non-general solution */
{ /* FIRST CASE a */
tau_l = tau_n;
p = 1/(branch1_n*branch2_n*branch_tail); /* Correct for switching prob. */
}
else
{ /* FIRST CASE b */
tau_l = tau1_n;
p = 1/((1-branch1_n)*branch2_n*branch_tail); /* Correct for switching prob. */
}
else
{
tau_l = tau_n;
p = 1/(branch2_n*branch_tail); /* Correct for switching prob. */
}
t = -tau_l*log(1e-12+rand01()); /* Sample from long-time tail a */
/* Correct for true pulse shape */
p *= w_focus; /* Correct for target focusing */
p *= tau_l/d; /* Correct for tail part */
p *= I0_n*w_mult*w_geom*M(lambda,T_n); /* Calculate true intensity */
}
else
{
/* SECOND CASE */
tau_l = tau2_n*lambda;
t = -tau_l*log(1e-12+rand01()); /* Sample from long-time tail */
p = n2/(n2-1)*((1-exp(-d/tau_l))-(1-exp(-n2*d/tau_l))*exp(-(n2-1)*t/tau_l)/n);
/* Correct for true pulse shape */
p /= (1-branch2_n)*branch_tail; /* Correct for switching prob. */
p *= tau_l/d; /* Correct for tail part */
p *= w_focus; /* Correct for target focusing */
p *= I2_n*w_mult*w_geom/(1+exp(chi2_n*lambda-2.2))/lambda; /* Calculate true intensity */
}
t += d; /* Add pulse length */
}
else /* Tail-flag */
{
if (tfocus_width>0) {
t = tfocus_time-dt; /* Set time to hit time window center */
t += randpm1()*tfocus_width/2.0; /* Add random time within window width */
} else {
t = d*rand01(); /* Sample from bulk pulse */
}
if (t<0) ABSORB; /* Kill neutron if outside pulse duration */
if (t>d) ABSORB;
if (rand01() < branch2_n)
{
if (rand01() < branch1_n) /* Quick and dirty non-general solution */
{ /* FIRST CASE a */
tau_l = tau_n;
p = 1/(branch1_n*branch2_n*(1-branch_tail)); /* Correct for switching prob. */
}
else
{ /* FIRST CASE b */
tau_l = tau1_n;
p = 1/((1-branch1_n)*branch2_n*(1-branch_tail)); /* Correct for switching prob. */
}
p *= 1-n/(n-1)*(exp(-t/tau_l)-exp(-n*t/tau_l)/n); /* Correct for true pulse shape */
p *= w_focus; /* Correct for target focusing */
if (tfocus_width>0) {
p *= tfocus_width/d; /* Correct for time focusing */
}
p *= I0_n*w_mult*w_geom*M(lambda,T_n); /* Calculate true intensity */
}
else
{
/* SECOND CASE */
tau_l = tau2_n*lambda;
p = 1-n2/(n2-1)*(exp(-t/tau_l)-exp(-n2*t/tau_l)/n2); /* Correct for true pulse shape */
p /= (1-branch2_n)*(1-branch_tail); /* Correct for switching prob. */
p *= w_focus; /* Correct for target focusing */
if (tfocus_width) {
p *= tfocus_width/d; /* Correct for time focusing */
}
p *= I2_n*w_mult*w_geom/(1+exp(chi2_n*lambda-2.2))/lambda; /* Calculate true intensity */
}
}
if (cold && src_2012) {
/* Correction factors to converts 'predicted' spectrum from cold moderator to the one observed in MCNPX */
if (lambda<=2.5) cor=log(1.402+0.898*lambda)*(2.0776-4.1093*lambda+4.8836*pow(lambda,2)-2.4715*pow(lambda,3)+0.4521*pow(lambda,4));
else if (lambda <= 3.5) cor = log(1.402 + 0.898*lambda)*(4.3369 - 1.8367*lambda + 0.2524*pow(lambda,2) );
else if (lambda > 3.5) cor = log(1.402 + 0.898*lambda);
} else {
/* Thermal (pre-)moderator, i.e. no correction */
cor = 1.0;
}
p *= cor;
t+=(double)floor((n_pulses)*rand01())/nu; /* Select a random pulse */
%}
MCDISPLAY
%{
/* Draw cold moderator as cylinder */
circle("xz", 0, yheight/2.0, 0, cyl_radius);
circle("xz", 0, -yheight/2.0, 0, cyl_radius);
line(0, -yheight/2.0, cyl_radius, 0, yheight/2.0, cyl_radius);
line(0, -yheight/2.0, -cyl_radius, 0, yheight/2.0, -cyl_radius);
line(cyl_radius, yheight/2.0, 0, cyl_radius, yheight/2.0, 0);
line(-cyl_radius, -yheight/2.0, 0, -cyl_radius, yheight/2.0, 0);
/* Draw thermal moderators as a couple of squares + some lines */
// Left
multiline(4, t1x*cyl_radius, -yheight/2.0, t1z*cyl_radius,
t1x*(cyl_radius + width_t), -yheight/2.0, t1z*(cyl_radius + width_t),
t1x*(cyl_radius + width_t), yheight/2.0, t1z*(cyl_radius + width_t),
t1x*cyl_radius, yheight/2.0, t1z*cyl_radius);
// Right
multiline(4, t2x*cyl_radius, -yheight/2.0, t2z*cyl_radius,
t2x*(cyl_radius + width_t), -yheight/2.0, t2z*(cyl_radius + width_t),
t2x*(cyl_radius + width_t), yheight/2.0, t2z*(cyl_radius + width_t),
t2x*cyl_radius, yheight/2.0, t2z*cyl_radius);
/* Dashed lines for indicating "beam extraction" area... */
dashed_line(t1x*cyl_radius, -yheight/2.0, t1z*cyl_radius, t1x*r_empty, -yheight/2.0, t1z*r_empty,10);
dashed_line(t1x*cyl_radius, yheight/2.0, t1z*cyl_radius, t1x*r_empty, yheight/2.0, t1z*r_empty,10);
dashed_line(t2x*cyl_radius, -yheight/2.0, t2z*cyl_radius, t2x*r_empty, -yheight/2.0, t2z*r_empty,5);
dashed_line(t2x*cyl_radius, yheight/2.0, t2z*cyl_radius, t2x*r_empty, yheight/2.0, t2z*r_empty,5);
/* Circles indicating extent of the "empty" zone where optics is not allowed */
circle("xz", 0, yheight/2.0, 0, r_empty);
circle("xz", 0, -yheight/2.0, 0, r_empty);
/* Circles indicating the builk shielding of the target monolith at 6 m */
circle("xz", 0, focus_yh/2.0 , 0, 6);
circle("xz", 0, -focus_yh/2.0 , 0, 6);
circle("xz", 0, 2, 0, 6);
circle("xz", 0, -2, 0, 6);
/* Rectangle indicating the chosen focus rectangle - where the optics starts... */
rectangle("xy",tx,ty,tz,focus_xw,focus_yh);
%}
END
|