1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: FermiChopper_ILL
*
* %Identification
*
* Written by: M. Poehlmann, C. Carbogno, H. Schober, E. Farhi
* Date: May 2002
* Origin: ILL Grenoble / TU Muenchen
* Modified by: K.Lieutenant, June 2005: added phase parameter. Comp validation.
* Modified by: E. Farhi, Jul 2008: uniformize parameter names ()
* Modified by: EF, Oct 2008: fix chopper orientation
* Modified by: EF, Mar 2009: fixed infinite recursion which may cause SEGV. Cleanup of code.
*
* Fermi Chopper with rotating frame.
*
* %D
* Models a Fermi chopper with optional supermirror coated blades
* supermirror facilities may be disabled by setting m = 0, R0=0
* Slit packages are straight. Chopper slits are separated by an infinitely
* thin absorbing material. The effective transmission (resulting from fraction
* of the transparent material and its transmission) may be specified.
* The chopper slit package width may be specified through the total width 'xwidth'
* of the full package or the width 'w' of each single slit. The other parameter
* is calculated by: xwidth = nslit*w.
*
* Example:
* FermiChopper_ILL(phase=-50.0, radius=0.04, nu=100,
* yheight=0.08, w=0.00022475, nslit=200.0, R0=0.0,
* Qc=0.02176, alpha=2.33, m=0.0, length=0.012, eff=0.95,
* zero_time=0)
*
* Markus Poehlmann <Markus.Poehlmann@ph.tum.de>
* Christian Carbogno <carbogno@ph.tum.de>
* and Helmut Schober <schober@ill.fr>
*
* %VALIDATION
* Apr 2005: extensive external test, most problems solved (cf. 'Bugs')
* Validated by: K. Lieutenant
*
* limitations:
* no blade width used
*
* %BUGS
* - overestimates peak width for long wavelengths
* - does not give the right pulse position, shape and width for slit widths below 0.1 mm
* - fails sometimes when using MPI
*
* %Parameters
* INPUT PARAMETERS:
*
* Geometrical chopper constants:
* radius: [m] chopper cylinder radius
* yheight: [m] Height of chopper
* nslit: [1] number of chopper slits
* length: [m] channel length of the Fermi chopper
* w: [m] width of one chopper slit
* xwidth: [m] optional total width of slit package
* nu: [Hz] chopper frequency
* eff: [1] efficiency = transmission x fraction of transparent material
* verbose: [1] optional flag to display component statistics, use 1 or 3 (debuging)
*
* Supermirror constants:
* m: [1] m-value of material. Zero means completely absorbing.
* alpha: [AA] slope of reflectivity
* Qc: [AA-1] critical scattering vector
* W: [AA-1] width of supermirror cut-off
* R0: [1] low-angle reflectivity
*
* Constants to reset time of flight:
* zero_time: [1] set time to zero: 0: no 1: once per half cycle
* phase: [deg] chopper phase at t=0
*
*
* %End
*****************************************************************************/
/* NOTE:
* The initial component version (McStas version <= 1.12) was written
* with an inverted coordinate frame orientation. This corresponds
* to inverting the frequency and phase sign.
*/
DEFINE COMPONENT FermiChopper_ILL
SETTING PARAMETERS (phase=0, radius=0.04, nu=100,
yheight=0.08, w=0.00022475, nslit=200.0, R0=0.0,
Qc=0.02176, alpha=2.33, m=0.0, W=2e-3, length=0.012, eff=0.95,
zero_time=0, xwidth=0, verbose=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef FCILL_TimeAccuracy
#define FCILL_TimeAccuracy 1e-8
#define FCILL_MAXITER 10
/* Definition of internal variable structure: all counters */
struct FermiChopper_ILL_struct {
/** other variables ********************************/
double omega, t0; /* chopper rotation */
};
/**************** DECLARING FUNCTIONS ***************************************/
/*********** ORTHOGONAL TRANSFORMATION INTO ROTATING FRAME ******************/
/************ X - component ********************/
#pragma acc routine seq
double xstrich(double X, double Z, double T, double omega, double t0){
return( X*cos(omega*(T-t0))+Z*sin(omega*(T-t0)) );
}
/************ Z - component ********************/
#pragma acc routine seq
double zstrich(double X, double Z, double T, double omega, double t0){
return( Z*cos(omega*(T-t0))-X*sin(omega*(T-t0)) );
}
/*************************NUMERICAL METHODS *********************************/
/*************************** SECANT METHOD FOR... ***************************/
/****************************...X-component *********************************/
#pragma acc routine seq
double xsecant(double x, double z, double vx, double vz,
double t, double dt, double d, double omega, double t0){
double dt1 = 1;
double counter = 0;
double t1 = 0;
double t2 = dt;
double xr1 = xstrich(x,z,t, omega, t0)-d;
double xr2 = xstrich(x+vx*t2,z+vz*t2,t+t2, omega, t0)-d;
double sign;
while ((fabs(dt1) > FCILL_TimeAccuracy) && (counter < FCILL_MAXITER) && (xr2-xr1)){
counter++;
dt1 = (t2-t1)*xr2/(xr2-xr1);
t2 = t1;
xr1 = xr2;
t1 += dt1;
xr2 = xstrich(x+vx*t1,z+vz*t1,t+t1, omega, t0)-d;
}
if(counter >= FCILL_MAXITER) t1 = -2;
return(t1);
}
/****************************...Z-component *********************************/
#pragma acc routine seq
double zsecant(double x, double z, double vx, double vz,
double t, double dt, double d, double omega, double t0) {
double t1 = 0;
double t2 = dt;
double dt1 = 1;
double counter = 0;
double zr1 = zstrich(x,z,t, omega, t0)-d;
double zr2 = zstrich(x+vx*t2,z+vz*t2,t+t2, omega, t0)-d;
while ((fabs(dt1) > FCILL_TimeAccuracy) && (counter < FCILL_MAXITER) && (zr2-zr1)){
counter++;
dt1 = (t2-t1)*zr2/(zr2-zr1);
t2 = t1;
zr1 = zr2;
t1 += dt1;
zr2 = zstrich(x+vx*t1,z+vz*t1,t+t1, omega, t0)-d;
}
if(counter >= FCILL_MAXITER) t1=-1;
return(t1);
}
/*************************** INTERPOLATION METHOD FOR... ********************/
/****************************...X-component *********************************/
#pragma acc routine seq
double xinterpolation(double x, double z, double vx, double vz,
double t, double dt, double d, double omega, double t0){
double sign;
double xr3=1, t3=0, t1=0, t2=dt, dt1=dt;
double counter = 0;
double xr1 = xstrich(x,z,t, omega, t0)-d;
double xr2 = xstrich(x+vx*dt,z+vz*dt,t+dt, omega, t0)-d;
while ((fabs(xr3) > FCILL_TimeAccuracy)&&(counter < FCILL_MAXITER)){
counter++;
t3 = (t1+t2)*0.5;
xr3 = xstrich(x+(vx*(t3)),z+(vz*(t3)),t+t3, omega, t0)-d;
xr2 = xstrich(x+(vx*(t2)),z+(vz*(t2)),t+t2, omega, t0)-d;
if(xr2*xr3<0) t1=t3;
else t2=t3;
}
if(counter >= FCILL_MAXITER) t3=-1;
return(t3);
}
/****************************...Z-component *********************************/
#pragma acc routine seq
double zinterpolation(double x, double z, double vx, double vz,
double t, double dt, double d, double omega, double t0){
double counter = 0;
double zr3=1,zr2=0,t3=0,t1=0,t2=dt;
while ((fabs(zr3)>FCILL_TimeAccuracy)&&(counter<FCILL_MAXITER)) {
counter++;
t3 = (t1+t2)*0.5;
zr3 = zstrich(x+(vx*(t3)),z+(vz*(t3)),t+t3, omega, t0)-d;
zr2 = zstrich(x+(vx*(t2)),z+(vz*(t2)),t+t2, omega, t0)-d;
if(zr2*zr3 < 0) t1=t3;
else t2=t3;
}
if(counter >= FCILL_MAXITER) t3=-1;
return(t3);
}
#endif
%}
DECLARE
%{
struct FermiChopper_ILL_struct FCVars;
%}
INITIALIZE
%{
/************************* INITIALIZE COUNTERS ******************************/
int i;
/************************ CALCULATION CONSTANTS *****************************/
FCVars.omega = 2*PI*nu;
if (nu && phase) FCVars.t0 = -phase/360.0/nu;
/* check of input parameters */
if (m < 0) m == 0;
if (radius <= 0) {
printf("FermiChopper_ILL: %s: FATAL: unrealistic cylinder radius radius=%g [m]\n", NAME_CURRENT_COMP, radius);
exit(-1);
}
if (yheight <= 0)
exit(printf("FermiChopper_ILL: %s: FATAL: unrealistic cylinder yheight =%g [m]\n", NAME_CURRENT_COMP, yheight));
if (xwidth > 0 && xwidth < radius*2 && nslit > 0) {
w = xwidth/nslit;
}
if (w <= 0) {
printf("FermiChopper_ILL: %s: FATAL: Slits in the package have unrealistic width w=%g [m]\n", NAME_CURRENT_COMP, w);
exit(-1);
}
if (nslit*w > radius*2) {
nslit = floor(radius/w);
printf("FermiChopper_ILL: %s: Too many slits to fit in the cylinder\n"
"Adjusting nslit=%f\n", NAME_CURRENT_COMP, nslit);
}
if (length > radius*2) {
length = sqrt(radius*radius - nslit*w*nslit*w/4);
printf("FermiChopper_ILL: %s: Slit package is longer than the whole\n"
"chopper cylinder. Adjusting length=%g [m]\n", NAME_CURRENT_COMP, length);
}
if (eff <= 0 || eff > 1) {
eff = 0.95;
printf("FermiChopper_ILL: %s: Efficiency is unrealistic\n"
"Adjusting eff=%f\n", NAME_CURRENT_COMP, eff);
}
if (Qc <= 0) { Qc = 0.02176; m = 0; R0=0; }
if (W <= 0) W=1e-6;
if (verbose && nu)
printf("FermiChopper_ILL: %s: frequency nu=%g [Hz] %g [rpm], time frame=%g [s] phase=%g [deg]\n"
, NAME_CURRENT_COMP, nu, nu*60, 2/nu, -FCVars.t0*360*nu);
/* fix for the wrong coordinate frame orientation to come back to McStas XYZ system */
FCVars.omega *= -1;
%}
TRACE
%{
/** local CALCULATION VARIABLES**************************************/
/** Interaction with slitpacket ***************************/
double slit_input; /* length of the slits */
double zr1,zr2; /* distance to slitpacket entrance/exit in rotating frame */
double xr1,xr2; /* X entrance/exit position in rotating frame */
/** Variables for calculating interaction with blades ***************/
double m1,m2; /* slope of the tangents */
double b1,b2; /* y-intersection of tangent */
/** Reflections ***********************************************/
double t3a, t3b, distance_Wa, distance_Wb;
double n1,n2,n3,n4;
/** variables used for calculating new velocities after reflection **/
double q;
double vper, vpar;
double arg;
/** Multiple Reflections ******************************/
int loopcounter=0; /* How many reflections happen? */
/** Time variables *********************************/
double t3; /* interaction time */
double dt; /* interaction intervals */
double t1,t2; /* cylinder intersection time */
/************** test, if the neutron interacts with the cylinder ***/
if (cylinder_intersect (&t1, &t2, x, y, z, vx, vy, vz, radius, yheight)) {
if (t1 <= 0) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron started inside the cylinder, t1=%g (enter)\n",
NAME_CURRENT_COMP, t1);
ABSORB; /* Neutron started inside the cylinder */
}
dt=t2-t1; /* total time of flight inside the cylinder */
PROP_DT(t1); /* Propagates neutron to entrance of the cylinder */
if (verbose > 2)
printf("FermiChopper_ILL: %s: PROP_DT t1=%8.3g t2=%8.3g xyz=[%8.3g %8.3g %8.3g] v=[%8.3g %8.3g %8.3g] t=%8.3g (IN cyl).\n",
NAME_CURRENT_COMP, t1, t2, x,y,z,vx,vy,vz,t);
if(dt > fabs(0.5/FCVars.omega*2*PI) && verbose) {
printf("FermiChopper_ILL: %s: Frequency too low. Method will fail.\n"
" Absorbing neutron\n", NAME_CURRENT_COMP);
ABSORB;
}
/* Checks if neutron enters or leaves from top or bottom of cylinder. */
if ( fabs(y) > yheight/2 ||
fabs(y+vy*dt) > yheight/2 ) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron hits top/bottom of cylinder, y=%8.3g (enter)\n",
NAME_CURRENT_COMP, y);
ABSORB;
}
/* checking wether the neutron can enter the chopper (slit channel) */
xr1 = xstrich(x,z,t, FCVars.omega, FCVars.t0);
if(fabs(xr1)>=nslit*w/2) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron X is outside cylinder aperture, xp1=%8.3g (enter)\n",
NAME_CURRENT_COMP, xr1);
ABSORB;
}
/*********************** PROPAGATE TO SLIT PACKAGE **************************/
/* Checking on which side of the Chopper the Neutron enters******/
slit_input = 0.5*length;
zr1 = zstrich(x,z,t, FCVars.omega, FCVars.t0);
zr2 = zstrich(x+vx*dt,z+vz*dt,t+dt, FCVars.omega, FCVars.t0);
if(zr1 < 0) slit_input *= -1;
/* Checking if the Neutron will hit the slits (Z) */
zr1 -= slit_input;
zr2 -= slit_input;
if (zr2*zr1>0) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron Z does not change sign, zr1=%8.3g zr2=%8.3g (enter)\n",
NAME_CURRENT_COMP, zr1,zr2);
ABSORB;
}
/* Calculating where/when Neutron hits the slits (Z) */
t3 = zsecant(x,z,vx,vz,t,dt,slit_input, FCVars.omega, FCVars.t0);
if((t3 < 0)||(t3 > dt)) {
t3 = zinterpolation(x,z,vx,vz,t,dt,slit_input, FCVars.omega, FCVars.t0);
}
if((t3 < 0)||(t3 > dt)) {
if (verbose)
printf("FermiChopper_ILL: %s: Can not reach entrance of slits. dt=%g t3=%g\n", NAME_CURRENT_COMP, dt, t3);
ABSORB;
}
/* Propagating whole system to that point */
PROP_DT(t3);
dt -= t3;
SCATTER;
if (verbose > 2)
printf("FermiChopper_ILL: %s: PROP_DT t3=%8.3g dt=%8.3g xyz=[%8.3g %8.3g %8.3g] length=%g (slit enter).\n",
NAME_CURRENT_COMP, t3, dt, x,y,z, slit_input);
/* Checking if neutron hits the slits entrance window (X) */
xr1 = xstrich(x,z,t, FCVars.omega, FCVars.t0);
if(fabs(xr1) >= nslit*w/2) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron X is outside slit package, xp1=%8.3g (enter)\n",
NAME_CURRENT_COMP, xr1);
ABSORB;
}
/* Calculating where/when Neutron leaves the slits (Z) */
t3 = zsecant(x,z,vx,vz,t,dt,-slit_input, FCVars.omega, FCVars.t0);
if((t3 < 0) || (t3 > dt)){
t3 = zinterpolation(x,z,vx,vz,t,dt,-slit_input, FCVars.omega, FCVars.t0);
}
if((t3 <= 0) || (t3 > dt)){
if (verbose)
printf("FermiChopper_ILL: %s: Can not reach exit of slits. dt=%8.3g t3=%8.3g\n", NAME_CURRENT_COMP, dt, t3);
ABSORB;
} else dt=t3;
/********************* PROPAGATION INSIDE THE SLIT PACKET *******************/
/* Which slit was hit ? */
n1 = floor(xr1/w);
/******************* BEGIN LOOP FOR MULTIPLE REFLECTIONS ********************/
for(loopcounter; loopcounter<=FCILL_MAXITER;loopcounter++){
double dt_to_tangent=0; /* time shift to go to tangent intersection */
/* Calculate most probable time for interaction with blades by using tangents */
m1 = xstrich(vx,vz,t, FCVars.omega, FCVars.t0)
+ FCVars.omega * zstrich(x,z,t, FCVars.omega, FCVars.t0);
m2 = xstrich(vx,vz,t+dt, FCVars.omega, FCVars.t0)
+ FCVars.omega * zstrich(x+vx*dt,z+vz*dt,t+dt,FCVars.omega,FCVars.t0);
b1 = xstrich(x,z,t, FCVars.omega, FCVars.t0) - m1*t;
b2 = xstrich(x+vx*dt,z+vz*dt,t+dt, FCVars.omega, FCVars.t0) - m2*(t+dt);
if (m1-m2) dt_to_tangent = ((b2-b1)/(m1-m2))-t;
else dt_to_tangent = -1;
/* If method with tangents doesn't succeed, just take the middle of the interval */
if((dt_to_tangent < 0)||(dt_to_tangent > dt)) dt_to_tangent=dt*0.5;
/* Calculate different positions for the neutron to determine interaction. */
/*...at the end of the slit: */
n2 = floor(xstrich(x+(vx*dt),z+(vz*dt),t+dt, FCVars.omega, FCVars.t0)/w);
/*...at the before calculated t3: tangent intersection point */
n3 = floor(xstrich(x+(vx*dt_to_tangent),z+(vz*dt_to_tangent),t+dt_to_tangent, FCVars.omega, FCVars.t0)/w);
if (verbose > 2)
printf("FermiChopper_ILL: %s: t3=%8.3g n=[%g %g %g] (time at tangent intersection).\n",
NAME_CURRENT_COMP, dt_to_tangent, n1, n2, n3);
/* Does the neutron stay in the same slit ? */
if((n2!=n1)||(n3!=n1)){
/* Choosing the first time it isn't in the slit anymore */
if(n3!=n1){
n2 = n3;
}
/************ABSORB to save calculation time ******************/
if (m == 0 || R0 == 0) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron hits absorbing coating (change slit).\n",
NAME_CURRENT_COMP);
ABSORB;
}
/********************** WHEN DOES IT HIT THE BLADE? *************************/
/*********** SECANT METHOD ****************************/
/* get position of slit wall towards which neutron is propagating */
if (n2 > n1) { /* X' positive side of slit is in principle the first intersection to test*/
distance_Wa = n1*w+w;
distance_Wb = n1*w;
} else { /* X' negative side of slit */
distance_Wb = n1*w+w;
distance_Wa = n1*w;
}
/* time shift to reach slit wall point in [0,dt_to_tangent]: X'=distance_W slit_wall */
t3a = xsecant(x,z,vx,vz,t,dt,distance_Wa, FCVars.omega, FCVars.t0);
t3b = xsecant(x,z,vx,vz,t,dt,distance_Wb, FCVars.omega, FCVars.t0);
if (t3b < 0) t3 = t3a;
else if (t3a < 0 && t3b > 0) t3 = t3b;
else t3 = (t3a < t3b ? t3a : t3b);
/***** INTERPOLATION USED WHEN SECANT METHOD FAILS ****/
/* try second intersection method in case of failure */
if ((t3 < 0) || (t3 > dt)) {
t3a = xinterpolation(x,z,vx,vz,t,dt,distance_Wa, FCVars.omega, FCVars.t0);
t3b = xinterpolation(x,z,vx,vz,t,dt,distance_Wb, FCVars.omega, FCVars.t0);
if (t3b < 0) t3 = t3a;
else if (t3a < 0 && t3b > 0) t3 = t3b;
else t3 = (t3a < t3b ? t3a : t3b);
}
/* Check for errors in calculation*******/
if ((t3 < 0) || (t3 > dt)) {
if (verbose)
printf("FermiChopper_ILL: %s: Reflecting interpolation Problem. dt=%8.3g t3=%8.3g\n",
NAME_CURRENT_COMP, dt, t3);
ABSORB;
}
/* Propagate whole system to that point */
PROP_DT(t3); dt -= t3;
if (verbose > 2)
printf("FermiChopper_ILL: %s: PROP_DT t3=%8.3g dt=%8.3g xyz=[%8.3g %8.3g %8.3g] (on wall).\n",
NAME_CURRENT_COMP, t3, dt, x,y,z);
/* Check if this point is inside the slit packet */
if(fabs(zstrich(x,z,t, FCVars.omega, FCVars.t0)) > fabs(slit_input)){
if (verbose > 2)
printf("FermiChopper_ILL: %s: Neutron is outside slit pack (on slit wall).\n",
NAME_CURRENT_COMP);
break;
}
/******************** REFLECTION ALGORITHM ********************************/
vper = xstrich(vx,vz,t, FCVars.omega, FCVars.t0); /* perpendicular velocity (to blade) */
vpar = zstrich(vx,vz,t, FCVars.omega, FCVars.t0); /* parallel velocity (to blade) */
q = 2*MS2AA*(fabs(vper));
if (q > Qc && W){
arg = (q-m*Qc)/W;
if (arg < 10.0) p *= 0.5*(1-tanh(arg))*(1-alpha*(q-Qc));
else {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron hits absorbing coating (on slit wall).\n",
NAME_CURRENT_COMP);
ABSORB;
}
}
if (R0 != 0.0){
p *= R0;
vper *= (-1); /* Mirroring perpendicular velocity */
/**************SET NEW VELOCITIES***********/
vx = vper*cos(FCVars.omega*(t-FCVars.t0))
- vpar*sin(FCVars.omega*(t-FCVars.t0));
vz = vper*sin(FCVars.omega*(t-FCVars.t0))
+ vpar*cos(FCVars.omega*(t-FCVars.t0));
SCATTER;
} else {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron hits absorbing coating (R0=0).\n",
NAME_CURRENT_COMP);
ABSORB;
}
/* Recalculating when Neutron will leave the slitpacket */
t3 = zsecant(x,z,vx,vz,t,dt,-slit_input,FCVars.omega,FCVars.t0);
if((t3 < 0) || (t3 > dt)) {
t3=zinterpolation(x,z,vx,vz,t,dt,-slit_input,
FCVars.omega,FCVars.t0);
}
/* Check for errors in calculation*******/
if ((t3 < 0) || (t3 > dt)) {
if (verbose)
printf("FermiChopper_ILL: %s: Reflecting interpolation Problem. dt=%8.3g t3=%8.3g\n",
NAME_CURRENT_COMP, dt, t3);
ABSORB;
} else dt=t3;
} /* end if n2 != n2 != n3 */
else break;
} /* end for */
/********************* END OF THE FOR LOOP **********************************/
/****New time of cylinder intersection will be calculated**********/
if (!cylinder_intersect (&t1, &t2, x, y, z, vx, vy, vz, radius, yheight)) {
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron has unexpectidely exited cylinder ! (exiting)\n",
NAME_CURRENT_COMP);
ABSORB;
}
if (t1 > 0 && verbose) {
printf("FermiChopper_ILL: %s: Neutrons are leaving chopper in the wrong direction! \n", NAME_CURRENT_COMP);
}
if (t2 <= 0 && verbose) {
printf("FermiChopper_ILL: %s: Neutrons are leaving chopper without any control\n", NAME_CURRENT_COMP);
}
/*********** PROPAGATE TO CYLINDER SURFACE ***********************************/
PROP_DT(t2);
SCATTER;
if (verbose > 2)
printf("FermiChopper_ILL: %s: t1=%8.3g PROP_DT t2=%8.3g xyz=[%8.3g %8.3g %8.3g] (OUT cyl).\n",
NAME_CURRENT_COMP, t1, t2, x,y,z);
/*****Checking if the neutron left the cylinder by his top or bottom **/
if ( fabs(y) > yheight/2 ){
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron hits top/bottom of cylinder, y=%8.3g (exiting)\n",
NAME_CURRENT_COMP, y);
ABSORB;
}
/*****Checking if neutron hits chopper exit ***/
if(fabs(xstrich(x,z,t,FCVars.omega,FCVars.t0))>=nslit*w/2){
if (verbose > 2)
printf("FermiChopper_ILL: %s: ABSORB Neutron X is outside slit package cylinder, xp1=%8.3g (exiting)\n",
NAME_CURRENT_COMP, xstrich(x,z,t,FCVars.omega,FCVars.t0));
ABSORB;
}
/**** Transmission coefficent******/
p = p*eff; //finite cross section + transmission
} /* end if cylinder_intersect */
else {
if (verbose > 2 && 0)
printf("FermiChopper_ILL: %s: ABSORB Neutron has not interacted with FC\n",
NAME_CURRENT_COMP);
ABSORB;
}
/************************ TIME OF FLIGHT RESET ************************/
if (zero_time && nu)
t -= (((int)((t+1/(4*nu))/(1/(2*nu))))*(1/(2*nu)));
%}
MCDISPLAY
%{
double index=0;
double xpos, zpos;
double ymax = yheight/2;
double ymin = -ymax;
/* cylinder top/center/bottom */
circle("xz", 0,ymax,0,radius);
circle("xz", 0,0 ,0,radius);
circle("xz", 0,ymin,0,radius);
/* vertical lines to make a kind of volume */
line( 0 ,ymin,-radius, 0 ,ymax,-radius);
line( 0 ,ymin, radius, 0 ,ymax, radius);
line(-radius,ymin, 0 ,-radius,ymax, 0 );
line( radius,ymin, 0 , radius,ymax, 0 );
/* slit package */
index = -nslit/2;
zpos = length/2;
for (index = -nslit/2; index < nslit/2; index++) {
xpos = index*w;
multiline(5, xpos, ymin, -zpos,
xpos, ymax, -zpos,
xpos, ymax, +zpos,
xpos, ymin, +zpos,
xpos, ymin, -zpos);
}
/* cylinder inner sides containing slit package */
xpos = nslit*w/2;
zpos = sqrt(radius*radius - xpos*xpos);
multiline(5, xpos, ymin, -zpos,
xpos, ymax, -zpos,
xpos, ymax, +zpos,
xpos, ymin, +zpos,
xpos, ymin, -zpos);
xpos *= -1;
multiline(5, xpos, ymin, -zpos,
xpos, ymax, -zpos,
xpos, ymax, +zpos,
xpos, ymin, +zpos,
xpos, ymin, -zpos);
%}
END
|