1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*******************************************************************************
*
* Component: FlatEllipse_finite_mirror
*
* %I
* Written by: Christoph Herb, TUM
* Version: 0.1
* Origin: TUM
* Date: 2022-2023
*
* %D
* Simulates NMO (nested mirror optic) modules as concevied by Böni et al., see
* Christoph Herb et al., Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.
*
* The component relies on an updated version of conic.h from MIT.
*
* %P
* sourceDist: [m] Distance used for calculating the spacing of the mirrors
* LStart: [m] Left focal point
* LEnd: [m] Right focal point
* lStart: [m] z-Value of the mirror start
* lEnd: [m] z-Value of the mirror end
* r_0: [m] distance to the mirror at lStart
* nummirror: [1] number of mirrors
* mirror_width: [mm] width of the individual mirrors
* doubleReflections: [1] binary value determining whether the mirror backside is reflective
* rfront_inner_file: [str] file of distances to the optical axis of the individual mirrors
*
*
* %L
* Christoph Herb et al., Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.
* %E
*
*******************************************************************************/
DEFINE COMPONENT FlatEllipse_finite_mirror
SETTING PARAMETERS (
sourceDist = 0, //only relevant for the caculated spacing of the mirrors, usually this has to equal LStart
LStart=0.6, //only relevant for the calculation of the reflections, z coordinate of the first focal point of the ellipses
LEnd = 0.6, //z coordinate of the second focal point of the ellipses
lStart = 0., //z coordinate of the beginning of the mirrors
lEnd = 0., //z coordinate of the end of the mirrors
r_0 = 0.02076, //distance of the defining point at z=0 on the outermost mirror
int nummirror= 9, // number of mirrors in the assembly
mf = 4, //mvalue of the inner side of the coating, m>10 results in perfect reflections
mb = 0, //mvalue of the outer side of the coating, m>10 results in perfect reflections
R0 = 0.99,
Qc = 0.021,
W = 0.003,
alpha = 6.07,
mirror_width = 0.003, //width of the mirror (m), take care that the mirrors do not intersect
mirror_sidelength = 1,//lateral extension of the mirror system along y
doubleReflections = 0, //can neutrons be reflected from the backside of a mirror
string rfront_inner_file = "NULL"//file name of the file providing the distances to the optical axis of the mirrors at the entrance, lStart, of the respective mirror
)
SHARE
%{
%include "ref-lib"
%include "conic.h"
%include "read_table-lib"
/* Function originally defined in file "calciterativemirrors.h"
/*! \brief Function to return an array of distances for a nested mirror assembly, see attached files. Also works reasonably well for parabolic mirrors
see
@param number number of entries in the array = number of mirrros
@param z_0 z-coordinate of the initial point on the mirror
@param r_0 r-coordinate of the initial point on the mirror
@param z_extract z-coordinate at which the distances are extracted
@param LStart z-coordinate of the left focal point
@param LEnd z-coordinate of the right focal point
@param lStart z-coordinate at which the mirrors begin
@param lEnd z-coordinate at which the mirrros end
@return pointer to array with number of distances
*/
double * get_r_at_z0(int number, double z_0, double r_0, double z_extract, double LStart, double LEnd, double lStart, double lEnd) {
int n = number;
double *r_zExtracts = malloc(n*sizeof(double_t)); /* n is an array of 10 integers */
r_zExtracts[0] = r_0;
//helper variables as in conic_finite_mirror.h and explained in swissneutronics_überlegungen
double k1;
double k2;
double k3;
double c;
double u;
double a;
double r_lEnd;
double r_lStart;
//initial mirror is calculated from the initial point z0, r0
c = (LEnd - LStart)/2;
u = (z_0 + c - LEnd);
a = sqrt((u*u+c*c+r_0*r_0+sqrt(pow(u*u+c*c+r_0*r_0, 2)-4*c*c*u*u))/2);
k3 = c*c/(a*a)-1;
k2 = 2*k3*(c-LEnd);
k1 = k3*(c-LEnd)*(c-LEnd)-c*c+a*a;
printf("k1 %f k2 %f k3 %f\n", k1, k2, k3);
//next mirror will be calculated with the point on the surface being lStart, r_lStart
for( int k = 0; k < number;++k){
r_zExtracts[k] = sqrt(k1 + k2*z_extract + k3*z_extract*z_extract);
r_lEnd = sqrt(k1+ k2*lEnd + k3*lEnd*lEnd);//calculate the radius at the end
r_lStart = r_lEnd*(lStart-LStart)/(lEnd-LStart);//
c = (LEnd - LStart)/2;
u = (lStart + c - LEnd);
a = sqrt((u*u+c*c+r_lStart*r_lStart+sqrt(pow(u*u+c*c+r_lStart*r_lStart, 2)-4*c*c*u*u))/2);
k3 = c*c/(a*a)-1;
k2 = 2*k3*(c-LEnd);
k1 = k3*(c-LEnd)*(c-LEnd)-c*c+a*a;
printf("k1 %f k2 %f k3 %f\n", k1, k2, k3);
//r_lEnd = sqrt(k1+ k2*lEnd + k3*lEnd*lEnd);
//r_lStart = r_lEnd*(lStart-LStart)/(lEnd-LStart);
};
return r_zExtracts;
}
%}
DECLARE
%{
//Scene where all geometry is added to
Scene s;
//point structure
Point p1;
//Function to handle Conic-Neutron collisions with reflectivity from McStas Tables
double *rfront_inner;//all r-distances at lStart for all mirror surfaces
int silicon; // +1: neutron in silicon, -1: neutron in air, 0: mirrorwidth is 0; neutron cannot be in silicon and also does not track mirror transitions
t_Table rsTable;
%}
INITIALIZE
%{
if (rfront_inner_file && strlen(rfront_inner_file) && strcmp(rfront_inner_file,"NULL") && strcmp(rfront_inner_file,"0")) {
if (Table_Read(&rsTable, rfront_inner_file, 1) <= 0){ /* read 1st block data from file into pTable */
exit(fprintf(stderr,"FlatEllipse_finite_mirror: %s: can not read file %s\n", NAME_CURRENT_COMP, rfront_inner_file));
}
//read the data from the file into an array and point rfron_inner to it
nummirror = rsTable.rows;
rfront_inner = malloc(sizeof(double)*nummirror);
for (int i = 0; i < nummirror; i++){
rfront_inner[i] = Table_Index(rsTable, i, 1);//reads the value of the second col where i sits in the first col
}
} else {//proceed as usual calculating the values from the outermost mirror and the number of mirrors
printf("automatic calulation\n");
rfront_inner = get_r_at_z0(nummirror, 0, r_0, lStart, sourceDist, LEnd, lStart, lEnd);
//calculate the r-distances of all mirrors at the entry of the NMO, we will need this later
}
if (sourceDist == 0){//obsolete?
sourceDist = LStart;
}
silicon = (mirror_width==0) ? 0 : -1; //neutron starts in air by default
//Load Reflectivity Data File TODO
//Make new scene
s = makeScene();
//Set Scene to use custom trace function for conic
//s.traceNeutronConic = traceNeutronConicWithTables;
//Add Geometry Here
for (int i = 0; i < nummirror; i++) {
p1 = makePoint(rfront_inner[i], 0, lStart);
addFlatEllipse(LStart, LEnd, p1, lStart, lEnd, -mirror_sidelength/2, mirror_sidelength/2, mf, R0,Qc,alpha,W, &s); //inner side of the mirror
printf("b[%d] = %f\n", i, rfront_inner[i]);
}
if (mirror_width > 0){
for (int i = 0; i < nummirror; i++){
p1 = makePoint(rfront_inner[i]+mirror_width, 0, lStart);
addFlatEllipse(LStart, LEnd, p1, lStart, lEnd, -mirror_sidelength/2, mirror_sidelength/2, mb, R0,Qc,alpha,W, &s); //backside of the above mirror shifted by mirror_width
}
}
addEndDisk(lEnd, 0.0, 2000, &s); //neutrons will be propagated to the end of the assembly, important if they still have to move through silicon to be refracted at the correct position
//addEllipsoid(-L, L,p1, -l,+l, 40,&s);
%}
TRACE
%{
double dt;
double x_check;
dt = (-z + lStart)/vz;
if (dt < 0) {
printf("negative time\n");
}
PROP_DT(dt); //propagate neutron to the entrance window of the NMO
/* "_mctmp_a" defines a "silicon" state variable in underlying conic.h functions */
_mctmp_a=silicon;
if (mirror_width>0){ // if the width of the mirrors is finite neutrons have to know whether they are in silicon or not
x_check = fabs(x);//lateral component of the neutron which determines whether the neutron arrives in silicon
for (int i = 0; i < nummirror; i++){
dt = fabs(rfront_inner[i]); //make sure the mirror distance to check against is positive, repeated use of same variable don't do this at home
if (dt +mirror_width >= x_check){ //backside of the substrate further out than neutron
if (dt <= x_check) { // mirror itself closer to the optical axis than the neutrons, i.e., we arrive in silicon
/* "_mctmp_a" defines a "silicon" state variable in underlying conic.h functions */
_mctmp_a=1;
//First we have to refract at the entrance
Vec nStart = makeVec(0, 0, 1); //surface normal is oriented in beam direction hopefully
Vec init_vec = get_class_particleVel(*_particle);
refractNeutronFlat(_particle, nStart, 0, 0.478);//m_{silicon} = 0.478 laut Peter
break;
}
}
else{ //backside of the mirror is closer to optical axis than neutron; as all further mirrors are even closer we can break here
break;
}
}
}
traceSingleNeutron(_particle,s);
Vec nEnd = makeVec(0, 0, 1);
if (_mctmp_a==1){//if the neutron arrives at the end of the mirror assembly while still in silicon, it will refract again at the end of the mirror
refractNeutronFlat(_particle, nEnd, 0.478, 0);//TODO add functionality to put whatever critical angle
}
if (!_particle->_absorbed) {
SCATTER;
}
%}
FINALLY %{
//Mainly Writes Inline Detector Data
free(rfront_inner);
finishSimulation(&s);
%}
MCDISPLAY//TODO this does not work as of now does not show the orientation of the flat conics
%{
//Enlarge xy-plane when mcdisplay is ran with --zoom
magnify("xy");
//Draw xy-axis contour for Conic Surfaces
int i;
for (i = 0; i < s.num_c; i++) {
double step = (s.c[i].ze-s.c[i].zs)/100;
double cz;
for (cz = s.c[i].zs+step; cz <= s.c[i].ze; cz+= step) {
double rp = rConic(cz-step,s.c[i]);
double rc = rConic(cz, s.c[i]);
line(0,rp,cz-step,0,rc,cz);
line(0,-rp,cz-step,0,-rc,cz);
line(rp,0,cz-step,rc,0,cz);
line(-rp,0,cz-step,-rc,0,cz);
}
}
//Draw xy-axis cross hairs for Disks
for (i = 0; i < s.num_di; i++) {
line(s.di[i].r0, 0, s.di[i].z0, s.di[i].r1, 0, s.di[i].z0);
line(-s.di[i].r0, 0, s.di[i].z0, -s.di[i].r1, 0, s.di[i].z0);
line(0, s.di[i].r0, s.di[i].z0, 0, s.di[i].r1,s.di[i].z0);
line(0, -s.di[i].r0, s.di[i].z0, 0, -s.di[i].r1,s.di[i].z0);
}
%}
END
|