1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2011, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Guide
*
* %I
* Written by: Kristian Nielsen
* Modified by: Nikolaos Tsapatsaris to accept differently coated mirror planes
* Date: September 2 1998, Modified 2013
* Version: $Revision: 1.32 $
* Origin: Risoe
* Release: McStas 1.12c
*
* Neutron guide.
*
* %D
* Models a rectangular guide tube centered on the Z axis. The entrance lies
* in the X-Y plane.
* For details on the geometry calculation see the description in the McStas
* reference manual.
* The reflectivity profile may either use an analytical mode (see Component
* Manual) or a 2-columns reflectivity free text file with format
* [q(Angs-1) R(0-1)].
*
* Example: Guide(w1=0.1, h1=0.1, w2=0.1, h2=0.1, l=2.0,
* R0=0.99, Qc=0.021, alpha=6.07, m=2, W=0.003
*
* %VALIDATION
* May 2005: extensive internal test, no bugs found
* Validated by: K. Lieutenant
*
* %BUGS
* This component does not work with gravitation on. Use component Guide_gravity then.
*
* %P
* INPUT PARAMETERS:
*
* w1: [m] Width at the guide entry
* h1: [m] Height at the guide entry
* w2: [m] Width at the guide exit
* h2: [m] Height at the guide exit
* l: [m] Length of guide
* R0_left: [1] Low-angle reflectivity, left mirrror.
* Qc_left: [AA-1] Critical scattering vector, left mirrror.
* alpha_left: [AA] Slope of reflectivity, left mirrror.
* m_left: [1] m-value of material. Zero means completely absorbing, left mirrror.
* W_left: [AA-1] Width of supermirror cut-off, left mirrror.
* R0_right: [1] Low-angle reflectivity, right mirror.
* Qc_right: [AA-1] Critical scattering vector, right mirror.
* alpha_right: [AA] Slope of reflectivity, right mirror.
* m_right: [1] m-value of material. Zero means completely absorbing, right mirror.
* W_right: [AA-1] Width of supermirror cut-off, right mirror.
* R0_top: [1] Low-angle reflectivity, top mirror.
* Qc_top: [AA-1] Critical scattering vector, top mirror.
* alpha_top: [AA] Slope of reflectivity, top mirror.
* m_top: [1] m-value of material. Zero means completely absorbing, top mirror.
* W_top: [AA-1] Width of supermirror cut-off, top mirror.
* R0_bottom: [1] Low-angle reflectivity, bottom mirror.
* Qc_bottom: [AA-1] Critical scattering vector, bottom mirror.
* alpha_bottom: [AA] Slope of reflectivity, bottom mirror.
* m_bottom: [1] m-value of material. Zero means completely absorbing, bottom mirror.
* W_bottom: [AA-1] Width of supermirror cut-off, bottom mirror.
* reflect: [str] Reflectivity file name. Format [q(Angs-1) R(0-1)]
*
* %D
* Example values: m=4 Qc=0.0219 W=1/300 alpha=6.49 R0=1
*
* %E
*
* Mirror reflectivity files
* For the simulation of the guide surfaces Mirrotron reflectivity files [6] were used as a template for creating reflectivity files in VITESS using the following mathematical description:
* R = 1/2 R0(1 - tanh((Q - m Qc,Ni)/W) (1 - α(Q - Qc))
* using
* α = (Rm - R0) / (m Qc,Ni - Qc).
*
*
* m = Qmax/Qmax(Ni) Reflectivity at Q=m*Qc(Ni) Width of cut-off Alpha
* 1 0.99 0.003 0.000
* 1.5 0.97 0.003 1.904
* 2 0.95 0.003 1.904
* 2.5 0.92 0.003 2.222
* 3.6 0.78 0.003 3.846
* 4 0.75 0.003 3.333
*******************************************************************************/
DEFINE COMPONENT Guide_m
SETTING PARAMETERS (string reflect=0, w1, h1, w2, h2, l, R0_left=0.99, R0_right=0.99, R0_top=0.99, R0_bottom=0.99, Qc_left=0.0219, Qc_right=0.0219, Qc_top=0.0219, Qc_bottom=0.0219, alpha_left=6.07, alpha_right=6.07, alpha_top=6.07, alpha_bottom=6.07, m_left=2, m_right=2, m_top=2, m_bottom=2, W_left=0.003, W_right=0.003 , W_top=0.003 , W_bottom=0.003)
SHARE
%{
%include "read_table-lib"
%}
DECLARE
%{
t_Table pTable;
double m;
double alpha;
double Qc;
double R0;
double W;
%}
INITIALIZE
%{
if (mcgravitation) fprintf(stderr,"WARNING: Guide: %s: "
"This component produces wrong results with gravitation !\n"
"Use Guide_gravity.\n",
NAME_CURRENT_COMP);
if (reflect && strlen(reflect)) {
if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
exit(fprintf(stderr,"Guide: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
} else {
if (W_left < 0 || W_right < 0 || W_top < 0 || W_bottom < 0 || R0_left < 0 ||R0_right < 0 || R0_top < 0 || R0_bottom < 0 || Qc_left < 0 || Qc_right < 0 || Qc_top < 0 || Qc_bottom < 0 || m_left < 0 || m_right < 0 || m_top < 0 || m_bottom < 0)
{ fprintf(stderr,"Guide: %s: W R0 Qc must be >0.\n", NAME_CURRENT_COMP);
exit(-1); }
if (m_left < 1 && m_left != 0) fprintf(stderr,"WARNING: Guide: %s: m_left < 1 behaves as if m=1.\n",
NAME_CURRENT_COMP);
if (m_right < 1 && m_right != 0) fprintf(stderr,"WARNING: Guide: %s: m_right < 1 behaves as if m=1.\n",
NAME_CURRENT_COMP);
if (m_top < 1 && m_top != 0) fprintf(stderr,"WARNING: Guide: %s: m_top < 1 behaves as if m=1.\n",
NAME_CURRENT_COMP);
if (m_bottom < 1 && m_bottom != 0) fprintf(stderr,"WARNING: Guide: %s: m_bottom < 1 behaves as if m=1.\n",
NAME_CURRENT_COMP);
}
%}
TRACE
%{
double t1,t2; /* Intersection times. */
double av,ah,bv,bh,cv1,cv2,ch1,ch2,d; /* Intermediate values */
double weight; /* Internal probability weight */
double vdotn_v1,vdotn_v2,vdotn_h1,vdotn_h2; /* Dot products. */
int i; /* Which mirror hit? */
double q; /* Q [1/AA] of reflection */
double nlen2; /* Vector lengths squared */
/* ToDo: These could be precalculated. */
double ww = .5*(w2 - w1), hh = .5*(h2 - h1);
double whalf = .5*w1, hhalf = .5*h1;
/* Propagate neutron to guide entrance. */
PROP_Z0;
/* Scatter here to ensure that fully transmitted neutrons will not be
absorbed in a GROUP construction, e.g. all neutrons - even the
later absorbed ones are scattered at the guide entry. */
SCATTER;
if(x <= -whalf || x >= whalf || y <= -hhalf || y >= hhalf)
ABSORB;
for(;;)
{
/* Compute the dot products of v and n for the four mirrors. */
av = l*vx; bv = ww*vz;
ah = l*vy; bh = hh*vz;
vdotn_v1 = bv + av; /* Left vertical */
vdotn_v2 = bv - av; /* Right vertical */
vdotn_h1 = bh + ah; /* Lower horizontal */
vdotn_h2 = bh - ah; /* Upper horizontal */
/* Compute the dot products of (O - r) and n as c1+c2 and c1-c2 */
cv1 = -whalf*l - z*ww; cv2 = x*l;
ch1 = -hhalf*l - z*hh; ch2 = y*l;
/* Compute intersection times. */
t1 = (l - z)/vz;
i = 0;
if(vdotn_v1 < 0 && (t2 = (cv1 - cv2)/vdotn_v1) < t1)
{
t1 = t2;
i = 1;
}
if(vdotn_v2 < 0 && (t2 = (cv1 + cv2)/vdotn_v2) < t1)
{
t1 = t2;
i = 2;
}
if(vdotn_h1 < 0 && (t2 = (ch1 - ch2)/vdotn_h1) < t1)
{
t1 = t2;
i = 3;
}
if(vdotn_h2 < 0 && (t2 = (ch1 + ch2)/vdotn_h2) < t1)
{
t1 = t2;
i = 4;
}
if(i == 0)
break; /* Neutron left guide. */
PROP_DT(t1);
switch(i)
{
case 1: /* Left vertical mirror */
nlen2 = l*l + ww*ww;
q = V2Q*(-2)*vdotn_v1/sqrt(nlen2);
d = 2*vdotn_v1/nlen2;
vx = vx - d*l;
vz = vz - d*ww;
m = m_left;
Qc = Qc_left;
W = W_left;
alpha= alpha_left;
R0= R0_left;
break;
case 2: /* Right vertical mirror */
nlen2 = l*l + ww*ww;
q = V2Q*(-2)*vdotn_v2/sqrt(nlen2);
d = 2*vdotn_v2/nlen2;
vx = vx + d*l;
vz = vz - d*ww;
m = m_right;
Qc = Qc_right;
W = W_right;
alpha= alpha_right;
R0= R0_right;
break;
case 3: /* Lower horizontal mirror */
nlen2 = l*l + hh*hh;
q = V2Q*(-2)*vdotn_h1/sqrt(nlen2);
d = 2*vdotn_h1/nlen2;
vy = vy - d*l;
vz = vz - d*hh;
m = m_bottom;
Qc = Qc_bottom;
W = W_bottom;
alpha= alpha_bottom;
R0= R0_bottom;
break;
case 4: /* Upper horizontal mirror */
nlen2 = l*l + hh*hh;
q = V2Q*(-2)*vdotn_h2/sqrt(nlen2);
d = 2*vdotn_h2/nlen2;
vy = vy + d*l;
vz = vz - d*hh;
m = m_top;
Qc = Qc_top;
W = W_top;
alpha= alpha_top;
R0= R0_top;
break;
}
/* Now compute reflectivity. */
weight = 1.0; /* Initial internal weight factor */
if(m == 0)
ABSORB;
if (reflect && strlen(reflect))
weight = Table_Value(pTable, q, 1);
else if(q > Qc)
{
double arg = (q-m*Qc)/W;
if(arg < 10)
weight = .5*(1-tanh(arg))*(1-alpha*(q-Qc));
else
ABSORB; /* Cutoff ~ 1E-10 */
weight *= R0;
} else { /* q <= Qc */
weight *= R0;
}
p *= weight;
SCATTER;
}
%}
MCDISPLAY
%{
multiline(5,
-w1/2.0, -h1/2.0, 0.0,
w1/2.0, -h1/2.0, 0.0,
w1/2.0, h1/2.0, 0.0,
-w1/2.0, h1/2.0, 0.0,
-w1/2.0, -h1/2.0, 0.0);
multiline(5,
-w2/2.0, -h2/2.0, (double)l,
w2/2.0, -h2/2.0, (double)l,
w2/2.0, h2/2.0, (double)l,
-w2/2.0, h2/2.0, (double)l,
-w2/2.0, -h2/2.0, (double)l);
line(-w1/2.0, -h1/2.0, 0, -w2/2.0, -h2/2.0, (double)l);
line( w1/2.0, -h1/2.0, 0, w2/2.0, -h2/2.0, (double)l);
line( w1/2.0, h1/2.0, 0, w2/2.0, h2/2.0, (double)l);
line(-w1/2.0, h1/2.0, 0, -w2/2.0, h2/2.0, (double)l);
%}
END
|