1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Mirror_Elliptic
*
* %I
* Written by: <a href="mailto:desert@drecam.cea.fr">Sylvain Desert</a>
* Date: 2007
* Origin: <a href="http://www-llb.cea.fr/">LLB</a>
* Modified by: E. Farhi, uniformize parameter names (Jul 2008)
*
* Elliptical mirror.
*
* %D
* Models an elliptical mirror. The reflectivity profile is given by a 2-column reflectivity free
* text file with format [q(Angs-1) R(0-1)]. The component is centered on the ellipse.
*
* Example: Mirror_Elliptic(reflect="supermirror_m3.rfl", focus=6.6e-4,
* interfocus = 8.2, yheight = 0.0002, zmin=-3.24, zmax=-1.49)
*
*
* %P
* INPUT PARAMETERS:
* yheight: [m] height of the mirror
* focus: [m] focal length (m)
* interfocus: [m] Distance between the two elliptical focal points
* zmin: [m] z-axis coordinate of ellipse start
* zmax: [m] z-axis coordinate of ellipse end
* reflect: [q(Angs-1) R(0-1)] (str) Reflectivity file name. Format
* R0: [1] Low-angle reflectivity
* Qc: [AA-1] Critical scattering vector
* alpha: [AA] Slope of reflectivity
* m: [1] m-value of material. Zero means completely absorbing.
* W: [AA-1] Width of supermirror cut-off
*
* Example instrument file FocalisationMirrors.instr is available in the examples/ folder.
*
* %E
*******************************************************************************/
DEFINE COMPONENT Mirror_Elliptic
SETTING PARAMETERS (string reflect=0, focus=6.6e-4,interfocus=8.2, yheight=2e-4, zmin=0, zmax=0,
R0=0.99, Qc=0.0219, alpha=6.07, m=1.0, W=0.003)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
#ifndef SIGN
#define SIGN(a) (a >= 0 ? (a == 0 ? 0 : 1) : -1)
#endif
%include "read_table-lib"
%include "ref-lib"
%}
DECLARE
%{
double beta1; /* ellipse parameters */
double alpha1;
double beta2; /* ellipse squared parameters */
double alpha2;
t_Table pTable;
int err;
%}
INITIALIZE
%{
if (reflect && strlen(reflect) && strcmp(reflect, "NULL") && strcmp(reflect,"0")) {
if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
exit(fprintf(stderr,"Mirror_Elliptic: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
}
/* Calculation of ellipse parameters */
alpha1 = interfocus/2 +focus;
alpha2 = alpha1*alpha1;
beta2 = alpha2 - (interfocus*interfocus)/4;
beta1 = sqrt(beta2);
err = 0;
yheight/=2;
if(zmin==0&&zmax==0){
zmin = -alpha1;
zmax = alpha1;
}
else{
if(zmin>=zmax) exit(fprintf(stderr,"Mirror_Elliptic: %s: error definition zmin and zmax\n", NAME_CURRENT_COMP));
}
printf("Mirror_Elliptic: %s: alpha=%f alpha^2=%f beta=%f beta^2=%f\n",
NAME_CURRENT_COMP, alpha1,alpha2,beta1,beta2);
%}
TRACE
%{
double q, B;
double div,z1,x1,z2,x2;
double v;
double vx_2,vz_2;
int i=-1;
double oa,ob,ab,xa,za;
double angle;
double old_x;
double old_y;
double old_z;
double par[5] = {R0, Qc, alpha, m, W};
double a,b;
double delta;
/* First check if neutron has the right direction. */
if((vz != 0.0 && -z/vz >= 0) && x+beta1> 0)
{
i++;
old_z=z;
old_x=x;
old_y=y;
a=vx/vz;
b=x-a*z;
/* printf("\nx : %e / z : %f / y : %e\nvx : %e / vz : %e / vy : %e\na : %e / b : %f",x,z,y,vx,vz,a,b); */
/* Calculation of intersection with ellipse */
delta = sqrt(4*(a*a*b*b-(a*a+beta2/alpha2)*(b*b-beta2)));
/* printf("\nDELTA : %e",delta); */
z1 = (-2*a*b - delta)/(2*(a*a+beta2/alpha2));
z2 = (-2*a*b + delta)/(2*(a*a+beta2/alpha2));
x1 = a*z1+b;
x2 = a*z2+b;
/* printf("\nx1 : %f / z1 : %f\nx2 : %f / z2 : %f\n",x1,z1,x2,z2); */
/* Choose the right result */
if((z1>z2)&&(fabs(z1)<alpha1)){
x=SIGN(x1)*beta1*sqrt(1-z1*z1/alpha2);
z=z1;
}
else{
if(fabs(z2)<alpha1){
x=SIGN(x2)*beta1*sqrt(1-z2*z2/alpha2);
z=z2;
}
else{
printf("Mirror_Elliptic: %s: WARNING: Error in the coordinates calculation (Absorb)\n", NAME_CURRENT_COMP);
ABSORB;
}
}
if(fabs(x-a*z-b)>0.001){
#pragma acc atomic
err = err + 1;
printf("Mirror_Elliptic: %s: x=%e z=%f X=%f (Absorb)",NAME_CURRENT_COMP,x,z,a*z+b);
ABSORB;
}
/* y calculation */
y+=vy*(z-old_z)/vz;
/*reflection*/
if(x<0 && fabs(y)<=yheight && z>=zmin && z<=zmax){
/*reflection angle in the plane xz*/
div = -atan(vx/vz);
angle = -atan((beta2*z)/(alpha2*x));
/*vx and vz calculation after reflection*/
v=sqrt(vx*vx+vz*vz);
vz = v*cos(2*angle+div);
vx = v*sin(2*angle+div);
/*
printf("reflection2D :\nv: %e / angle (tangeante) : %f / div : %f / incidence : %f\n",v,angle,div,2*angle+div);
printf("vx : %f /vz : %f\n",vx,vz);
*/
/*incidence angle in 3D*/
ob = sqrt((old_x-x)*(old_x-x)+(old_z-z)*(old_z-z));
xa = x-ob*cos(div+angle)*sin(angle);
za = z-ob*cos(div+angle)*cos(angle);
oa = sqrt((old_x-xa)*(old_x-xa)+(old_z-za)*(old_z-za));
ob = sqrt((old_x-x)*(old_x-x)+(old_y-y)*(old_y-y)+(old_z-z)*(old_z-z));
ab = sqrt((xa-x)*(xa-x)+(old_y-y)*(old_y-y)+(za-z)*(za-z));
angle = acos((-ab*ab-ob*ob+oa*oa)/(2*ab*ob));
/* printf("3D :\nxa : %f / za : %f\noa : %f / ob : %f / ab : %f\nangle : %f / v : %e\n",xa,za,oa,ob,ab,angle,v); */
v=sqrt(vx*vx+vy*vy+vz*vz);
q = fabs(2*sin(angle)*v*V2Q);
/* Reflectivity (see component Guide). */
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0"))
TableReflecFunc(q, &pTable, &B);
else {
StdReflecFunc(q, par, &B);
}
if (B <= 0) { ABSORB; }
else p *= B;
}
else ABSORB;
SCATTER;
}
else{
ABSORB;
}
%}
FINALLY
%{
if(err!=0){
fprintf(stderr,"Mirror_Elliptic: %s: WARNING : %d neutrons absorbed for inadapted divergence !\n", NAME_CURRENT_COMP, err);
}
%}
MCDISPLAY
%{
double xi,zi,xf,zf,delta_z;
delta_z = (zmax-zmin)/99;
xi=-beta1*sqrt(1-zmin*zmin/alpha2);
line(xi,-yheight,zmin,xi,yheight,zmin);
zi=zmin;
/* printf("delta_z : %f / xi : %f / zi : %f\n",delta_z,xi,zi); */
do{
zf = zi + delta_z;
xf=-beta1*sqrt(1-zf*zf/alpha2);
line(xi,yheight,zi,xf,yheight,zf);
line(xf,yheight,zf,xf,-yheight,zf);
line(xf,-yheight,zf,xi,-yheight,zi);
xi=xf;
zi=zf;
} while(zf<=zmax);
%}
END
|