File: SANSCurve.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (236 lines) | stat: -rw-r--r-- 5,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*******************************************************************************
* McStas, neutron ray-tracing package
*         Copyright 1997-2003, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: SANSCurve
*
* %I
* Written by: Søren Kynde (kynde@nbi.dk)
* Rewritten by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A component mimicking the scattering from a given I(q)-curve by using
* linear interpolation between the given points.
*
* %D
* A box-shaped component simulating the scattering from any given I(q)-curve.
* The component uses linear interpolation to generate the points necessary to
* compute the scattering of any given neutron.
*
* %P
* DeltaRho: [cm/AA^3]            Excess scattering length density of the particles.
* Volume: [AA^3]                 Volume of the particles.
* Concentration: [mM]            Concentration of sample.
* AbsorptionCrosssection: [1/m]  Absorption cross section of the sample.
* xwidth: [m]                    Dimension of component in the x-direction.
* yheight: [m]                   Dimension of component in the y-direction.
* zdepth: [m]                    Dimension of component in the z-direction.
* SampleToDetectorDistance: [m]  Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m]            Radius of the detector (for focusing the scattered neutrons).
* FileWithCurve: []		Datafile with the given I(q).
*
* %E
*******************************************************************************/

DEFINE COMPONENT SANSCurve



SETTING PARAMETERS (DeltaRho = 1.0e-14, Volume = 1000.0,
Concentration = 0.01, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth,
SampleToDetectorDistance, DetectorRadius,
string FileWithCurve = "Curve.dat")



SHARE
%{
// Function used to determine the number of datapoints in the input file
int CountLines(FILE* File)
	{
		// Declarations
		double Dummy1;
		double Dummy2;
        char Line[256];
        int NumberOfDatapoints = 0;

		// I/O
        while (fgets(Line, sizeof(Line), File) != NULL) {

            if (sscanf(Line, "%lf %lf", &Dummy1, &Dummy2) == 2) {
                ++NumberOfDatapoints;
			}
        }

        return NumberOfDatapoints;
    }

	// Function used to extract the scattering profile from a given curve
    int LoadCurve(char Filename[], double** Q, double** I)
	{
		// Declarations
        FILE* File;

        int i = 0;
		int NumberOfDatapoints;

        char Line[256];

		double *IntensityArray;
		double *qArray;

		// Reading file
        if ((File = fopen(Filename, "r")) == 0) {
            printf("Cannot open file: %s...\n", Filename);
            exit(0);
        }

        NumberOfDatapoints = CountLines(File);

        qArray         = (double *) calloc(NumberOfDatapoints, sizeof(double));
        IntensityArray = (double *) calloc(NumberOfDatapoints, sizeof(double));

        rewind(File);

        while (i < NumberOfDatapoints && fgets(Line, sizeof(Line), File) != NULL) {
            if (sscanf(Line, "%lf %lf", &qArray[i], &IntensityArray[i]) == 2) {
                ++i;
            }
        }

        *I = IntensityArray;
        *Q = qArray;

        return NumberOfDatapoints;
    }
%}

DECLARE
%{
double Absorption;
double q;
double* Q;
double* I;
double ForwardScattering;
double Prefactor;
int NumberOfDatapoints;
double NumberDensity;
%}

INITIALIZE
%{
	// Rescale concentration into number of aggregates per m^3 times 10^-4
	NumberDensity = Concentration * 6.02214129e19;


	// Initializing curve from file
    NumberOfDatapoints = LoadCurve(FileWithCurve, &Q, &I);
    ForwardScattering = I[0];

	if (!xwidth || !yheight || !zdepth) {
		printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
	}

	Absorption = AbsorptionCrosssection;
	Prefactor = NumberDensity * pow(DeltaRho * Volume, 2);
%}

TRACE
%{
	// Declarations
	double t0;
	double t1;
	double l_full;
	double l;
	double l1;
	double Intensity;
	double Weight;
	double IntensityPart;
	double SolidAngle;
	double qx;
	double qy;
	double qz;
	double v;
	double dt;
	double vx_i;
	double vy_i;
	double vz_i;
	char Intersect = 0;
	double Slope;
	double Offset;
	int i;

	// Computation
	Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);

	if (Intersect) {

		if (t0 < 0.0) {
			fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
			ABSORB;
    	}

		// Compute properties of neutron
		v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
		l_full = v * (t1 - t0);
		dt = rand01() * (t1 - t0) + t0;
		PROP_DT(dt);
	    l = v * (dt - t0);

		// Store properties of incoming neutron
		vx_i = vx;
		vy_i = vy;
		vz_i = vz;

		// Generate new direction of neutron
		randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);

		NORM(vx, vy, vz);

		vx *= v;
		vy *= v;
		vz *= v;

		// Compute q
		qx = V2K * (vx_i - vx);
		qy = V2K * (vy_i - vy);
		qz = V2K * (vz_i - vz);

		q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));

		// Discard neutron, if q is out of range
		if ((q < Q[0]) || (q > Q[NumberOfDatapoints - 1])) {
		    ABSORB;
		}

		// Find the first value of q in the curve larger than that of the neutron
		i = 1;

		while (q > Q[i]) {
			++i;
		}

		// Do a linear interpolation
		l1 = v * t1;

		Slope = (I[i] - I[i - 1]) / (Q[i] - Q[i - 1]);
		Offset = I[i] - Slope * Q[i];

		Intensity = (Slope * q + Offset) / ForwardScattering;

		p *= l_full * SolidAngle / (4.0 * PI) * Prefactor * Intensity * exp(- Absorption * (l + l1) / v);

		SCATTER;
	}
%}

MCDISPLAY
%{
  box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}

END