1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*******************************************************************************
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: SANSCurve
*
* %I
* Written by: Søren Kynde (kynde@nbi.dk)
* Rewritten by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A component mimicking the scattering from a given I(q)-curve by using
* linear interpolation between the given points.
*
* %D
* A box-shaped component simulating the scattering from any given I(q)-curve.
* The component uses linear interpolation to generate the points necessary to
* compute the scattering of any given neutron.
*
* %P
* DeltaRho: [cm/AA^3] Excess scattering length density of the particles.
* Volume: [AA^3] Volume of the particles.
* Concentration: [mM] Concentration of sample.
* AbsorptionCrosssection: [1/m] Absorption cross section of the sample.
* xwidth: [m] Dimension of component in the x-direction.
* yheight: [m] Dimension of component in the y-direction.
* zdepth: [m] Dimension of component in the z-direction.
* SampleToDetectorDistance: [m] Distance from sample to detector (for focusing the scattered neutrons).
* DetectorRadius: [m] Radius of the detector (for focusing the scattered neutrons).
* FileWithCurve: [] Datafile with the given I(q).
*
* %E
*******************************************************************************/
DEFINE COMPONENT SANSCurve
SETTING PARAMETERS (DeltaRho = 1.0e-14, Volume = 1000.0,
Concentration = 0.01, AbsorptionCrosssection = 0.0,
xwidth, yheight, zdepth,
SampleToDetectorDistance, DetectorRadius,
string FileWithCurve = "Curve.dat")
SHARE
%{
// Function used to determine the number of datapoints in the input file
int CountLines(FILE* File)
{
// Declarations
double Dummy1;
double Dummy2;
char Line[256];
int NumberOfDatapoints = 0;
// I/O
while (fgets(Line, sizeof(Line), File) != NULL) {
if (sscanf(Line, "%lf %lf", &Dummy1, &Dummy2) == 2) {
++NumberOfDatapoints;
}
}
return NumberOfDatapoints;
}
// Function used to extract the scattering profile from a given curve
int LoadCurve(char Filename[], double** Q, double** I)
{
// Declarations
FILE* File;
int i = 0;
int NumberOfDatapoints;
char Line[256];
double *IntensityArray;
double *qArray;
// Reading file
if ((File = fopen(Filename, "r")) == 0) {
printf("Cannot open file: %s...\n", Filename);
exit(0);
}
NumberOfDatapoints = CountLines(File);
qArray = (double *) calloc(NumberOfDatapoints, sizeof(double));
IntensityArray = (double *) calloc(NumberOfDatapoints, sizeof(double));
rewind(File);
while (i < NumberOfDatapoints && fgets(Line, sizeof(Line), File) != NULL) {
if (sscanf(Line, "%lf %lf", &qArray[i], &IntensityArray[i]) == 2) {
++i;
}
}
*I = IntensityArray;
*Q = qArray;
return NumberOfDatapoints;
}
%}
DECLARE
%{
double Absorption;
double q;
double* Q;
double* I;
double ForwardScattering;
double Prefactor;
int NumberOfDatapoints;
double NumberDensity;
%}
INITIALIZE
%{
// Rescale concentration into number of aggregates per m^3 times 10^-4
NumberDensity = Concentration * 6.02214129e19;
// Initializing curve from file
NumberOfDatapoints = LoadCurve(FileWithCurve, &Q, &I);
ForwardScattering = I[0];
if (!xwidth || !yheight || !zdepth) {
printf("%s: Sample has no volume, check parameters!\n", NAME_CURRENT_COMP);
}
Absorption = AbsorptionCrosssection;
Prefactor = NumberDensity * pow(DeltaRho * Volume, 2);
%}
TRACE
%{
// Declarations
double t0;
double t1;
double l_full;
double l;
double l1;
double Intensity;
double Weight;
double IntensityPart;
double SolidAngle;
double qx;
double qy;
double qz;
double v;
double dt;
double vx_i;
double vy_i;
double vz_i;
char Intersect = 0;
double Slope;
double Offset;
int i;
// Computation
Intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
if (Intersect) {
if (t0 < 0.0) {
fprintf(stderr, "Neutron already inside sample %s - absorbing...\n", NAME_CURRENT_COMP);
ABSORB;
}
// Compute properties of neutron
v = sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2));
l_full = v * (t1 - t0);
dt = rand01() * (t1 - t0) + t0;
PROP_DT(dt);
l = v * (dt - t0);
// Store properties of incoming neutron
vx_i = vx;
vy_i = vy;
vz_i = vz;
// Generate new direction of neutron
randvec_target_circle(&vx, &vy, &vz, &SolidAngle, 0, 0, SampleToDetectorDistance, DetectorRadius);
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
// Compute q
qx = V2K * (vx_i - vx);
qy = V2K * (vy_i - vy);
qz = V2K * (vz_i - vz);
q = sqrt(pow(qx, 2) + pow(qy, 2) + pow(qz, 2));
// Discard neutron, if q is out of range
if ((q < Q[0]) || (q > Q[NumberOfDatapoints - 1])) {
ABSORB;
}
// Find the first value of q in the curve larger than that of the neutron
i = 1;
while (q > Q[i]) {
++i;
}
// Do a linear interpolation
l1 = v * t1;
Slope = (I[i] - I[i - 1]) / (Q[i] - Q[i - 1]);
Offset = I[i] - Slope * Q[i];
Intensity = (Slope * q + Offset) / ForwardScattering;
p *= l_full * SolidAngle / (4.0 * PI) * Prefactor * Intensity * exp(- Absorption * (l + l1) / v);
SCATTER;
}
%}
MCDISPLAY
%{
box(0, 0, 0, xwidth, yheight, zdepth,0, 0, 1, 0);
%}
END
|