File: SANSQMonitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (218 lines) | stat: -rw-r--r-- 4,987 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*******************************************************************************
* McXtrace, X-ray tracing package
*           Copyright, All rights reserved
*           Risoe National Laboratory, Roskilde, Denmark
*           Institut Laue Langevin, Grenoble, France
*
* Component: SANSQMonitor
*
* %I
* Written by: Søren Kynde (kynde@nbi.dk)
* Rewritten by: Martin Cramer Pedersen (mcpe@nbi.dk)
* Date: October 17, 2012
* Origin: KU-Science
*
* A circular detector measuring the radial average of intensity as a function
* of the momentum transform in the sample.
*
* %D
* A simple component simulating the scattering from a box-shaped, thin solution
* of monodisperse, spherical particles.
*
* %P
* RadiusDetector: [m]	Radius of the detector (in the xy-plane).
* DistanceFromSample: [m]  Distance from the sample to this component.
* LambdaMin: [AA]	Max sensitivity in lambda - used to compute the highest possible value of momentum transfer, q.
* NumberOfBins: []	Number of bins in the r (and q).
* RFilename: []	File used for storing I(r).
* qFilename: [] 	File used for storing I(q).
* Lambda0: []	If lambda is given, the momentum transfers of all rays are computed from this value. Otherwise, instrumental effects are neglected.
* restore_neutron: []	If set to 1, the component restores the original neutron.
*
* %E
*******************************************************************************/

DEFINE COMPONENT SANSQMonitor



SETTING PARAMETERS (NumberOfBins = 100,
  string RFilename = "RDetector", string qFilename = "QDetector",
  RadiusDetector, DistanceFromSample, LambdaMin = 1.0, Lambda0 = 0.0, restore_neutron = 0)



DECLARE
%{
  // Declarations
  double TwoThetaMax;
  double qMax;

  DArray1d Nofq;
  DArray1d Iofq;
  DArray1d IofqSquared;

  DArray1d NofR;
  DArray1d IofR;
  DArray1d IofRSquared;
%}

INITIALIZE
%{
  // Declarations
  int i;

  Nofq = create_darr1d(NumberOfBins);
  Iofq = create_darr1d(NumberOfBins);
  IofqSquared = create_darr1d(NumberOfBins);

  NofR = create_darr1d(NumberOfBins);
  IofR = create_darr1d(NumberOfBins);
  IofRSquared = create_darr1d(NumberOfBins);

  // Initializations
  for (i = 0; i < NumberOfBins; ++i) {
		Nofq[i] = 0.0;
		Iofq[i] = 0.0;
		IofqSquared[i] = 0.0;
  }

	TwoThetaMax = atan(RadiusDetector / DistanceFromSample);
	qMax = 4 * PI * sin(TwoThetaMax / 2.0) / LambdaMin;
%}

TRACE
%{
	// Declarations
  int i;
  double TwoTheta;
	double Lambda;

	double R;
	double RLow;
	double RHigh;

  double q;
	double qLow;
	double qHigh;

	double TwoThetaLow;
	double TwoThetaHigh;
	double AreaOfSlice;

  PROP_Z0;

	// Computation of R
  R = sqrt(pow(x, 2) + pow(y, 2));

	// Computation of q
	if (Lambda0 <= 0.0) {
		Lambda = 2.0 * PI / (V2K * sqrt(pow(vx, 2) + pow(vy, 2) + pow(vz, 2)));
	} else {
		Lambda = Lambda0;
	}

  TwoTheta = atan(R / DistanceFromSample);
  q = 4.0 * PI * sin(TwoTheta / 2.0) / Lambda;

	// Put neutron in the correct r-bin
	if (R < RadiusDetector) {
		i = floor(NumberOfBins * R / RadiusDetector);

		RLow = RadiusDetector / NumberOfBins * i;
		RHigh = RadiusDetector / NumberOfBins * (i + 1);

		TwoThetaLow = atan(RLow / DistanceFromSample);
		TwoThetaHigh = atan(RHigh / DistanceFromSample);

		AreaOfSlice = fabs((cos(2.0 * TwoThetaLow) - cos(2.0 * TwoThetaHigh)) * 2.0 * PI);
		#pragma acc atomic
		NofR[i] = NofR[i] + 1;
		double p_A=p/AreaOfSlice;
		#pragma acc atomic
		IofR[i] = IofR[i] + p_A;
		double p2_A2= p*p/(AreaOfSlice*AreaOfSlice);
		#pragma acc atomic
		IofRSquared[i] = IofRSquared[i] + p2_A2;
    }

	// Put neutron in the correct q-bin
    if (q < qMax) {
		i = floor(NumberOfBins * q / qMax);

		qLow = qMax / NumberOfBins * i;
		qHigh = qMax / NumberOfBins * (i + 1);

		TwoThetaLow = asin(qLow * Lambda / (4.0 * PI));
		TwoThetaHigh = asin(qHigh * Lambda / (4.0 * PI));

		AreaOfSlice = fabs((cos(2.0 * TwoThetaLow) - cos(2.0 * TwoThetaHigh)) * 2.0 * PI);

		#pragma acc atomic
		Nofq[i] = Nofq[i] + 1;
		double p_A=p/AreaOfSlice;
		#pragma acc atomic
		Iofq[i] = Iofq[i] + p_A;
		double p2_A2= p*p/(AreaOfSlice*AreaOfSlice);
		#pragma acc atomic
		IofqSquared[i] = IofqSquared[i] + p2_A2;
		
		SCATTER;
    }

	// Restore neutron if requested
  if (restore_neutron) {
//		RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
  }
%}

SAVE
%{
	// Output I(r)
  DETECTOR_OUT_1D(
    "QMonitor - Radially averaged distribution",
    "Radius [m]",
    "I(r)",
    "r",
  	0.0,
  	RadiusDetector,
  	NumberOfBins,
    &NofR[0],
  	&IofR[0],
  	&IofRSquared[0],
    RFilename
	);

	// Output I(q)
  DETECTOR_OUT_1D(
    "QMonitor - Distribution in q (Radially averaged)",
    "q [1 / AA]",
    "I(q)",
    "q",
  	0.0,
  	qMax,
  	NumberOfBins,
    &Nofq[0],
  	&Iofq[0],
  	&IofqSquared[0],
    qFilename
	);
%}

FINALLY
%{
  destroy_darr1d(Nofq);
  destroy_darr1d(Iofq);
  destroy_darr1d(IofqSquared);

  destroy_darr1d(NofR);
  destroy_darr1d(IofR);
  destroy_darr1d(IofRSquared);
%}

MCDISPLAY
%{
	circle("xy", 0, 0, 0, RadiusDetector);
%}

END