File: SNS_source.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (675 lines) | stat: -rw-r--r-- 20,664 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*******************************************************************************
*
* McStas, the neutron ray-tracing package
*         Maintained by Kristian Nielsen and Kim Lefmann,
*         Copyright 1997-2000 Risoe National Laboratory, Roskilde, Denmark
*
*Component: SNS_source
*
* %I
* Written by: G. Granroth
* Date: July 2004
* Origin: SNS Project Oak Ridge National Laboratory
* Modified: G. E. Granroth  Nov 2014 Move to Mcstas V2
* Modified: J.Y.Y. Lin April 2021 to Fix race condition
* Modified: P. WIllendrup 2021 Move to Move to Mcstas Version 3 and enable GPus
*
* A source that produces a time and energy distribution from the SNS moderator files
*
* %D
* Produces a time-of-flight spectrum from SNS moderator files
* moderator files can be obtained from the <A href="http://www.sns.gov/users/instrument_systems/components/moderator/">SNS website </A>.
* <strong>IMPORTANT: The output units of this component are N/pulse</strong>
* <strong>IMPORTANT: The component needs a FULL PATH to the source input file</strong>
* Notes:
* (1) the raw moderator files are per Sr.  The focusing parameters provide the solid
* angle accepted by the guide to remove the Sr dependence from the output. Therefore
* the best practice is to set focus_xw and focus_yh to the width and height of the next beam
* component, respectively. The dist parameter should then be set as the distance
* from the moderator to the first component.
* (2) This component works purely by interpolation. Therefore be sure that Emin and
* Emax are within the limits of the moderator file
*
*
* %P
* Input parameters:
* filename: []   Filename of source data
* xwidth: [m]    width of moderator
* yheight: [m]   height of moderator
* dist: [m]      Distance from source to the focusing rectangle
* xw: [m]        Width of focusing rectangle
* focus_yh: [m]  Height of focusing rectangle
* focus_xw: [m]  Width of focusing rectangle
* Emin: [meV]    minimum energy of neutron to generate
* Emax: [meV]    maximum energy of neutron to generate
* %E
*******************************************************************************/

DEFINE COMPONENT SNS_source

SETTING PARAMETERS (string filename, xwidth=0.1, yheight=0.12, dist, focus_xw, focus_yh, Emin, Emax)


SHARE %{

  #define Maxlength 200
  #define MAXCOLS 500

  /* ----------------------------------------------------------------
      routine to load E, I and t I data from SNS source files
  -----------------------------------------------------------------*/
  void sns_source_load(char* fname, double *xvec, double *yvec, int xcol, int ycol,
    int *veclenptr, double *tcol, double *Ecol, double **Imat,int *ntvals, int *nEvals)
  {
    FILE *fp;
    int idx1,idx2,idx3; /* counter for number of x, y values */
    int jk,idx3max;
    int numtvals;
    int totalvals;
    float indat[6];
    double *Icoltmp, *tcoltmp, *Ecoltmp;
    char *line;
    char *ret;
    Icoltmp=malloc(100000*sizeof(double));
    tcoltmp=malloc(100000*sizeof(double));
    Ecoltmp=malloc(100000*sizeof(double));
    line=malloc(200*sizeof(char));
    /* open file */
    printf("%s\n",fname);
    fp=fopen(fname,"r");
    if (fp==NULL){
      exit(printf("Error opening file: %s. Check existence/permission. Aborting.\n", fname));
      }
    /* skip header lines any line that begin with # */
    while((fgets(line,Maxlength,fp)!=NULL)&&(strchr(line,'#')!=NULL)){
    }
    idx1=0;
    /* read all lines that fit the format for the time integrated data*/
    while(sscanf(line," %f %f %f %f %f %f",&indat[0], &indat[1], &indat[2], &indat[3],&indat[4],&indat[5])>0){
        xvec[idx1]=indat[xcol];
        yvec[idx1]=indat[ycol];
        //printf("idx1 %i xvec %g yvec %g\n",idx1,xvec[idx1],yvec[idx1]);
        idx1++;
        ret=fgets(line,Maxlength,fp);
    }
    idx1--;   // correct index since it counts one line past useful data
   // printf("idx1 %i\n",idx1);
    idx2=floor(idx1/2);
    while((idx2<idx1)&&(yvec[idx2]>0)){
      idx2++;
    }
    if(idx2<idx1){
      *veclenptr=idx2;
    }
    else{
      *veclenptr=idx1-2;
    }
  /* find t data header */
    ret=fgets(line,Maxlength,fp);
    while(strrchr(line,'#')==NULL){
      ret=fgets(line,Maxlength,fp);
    }
  /*find end of t data header */
    while((fgets(line,Maxlength,fp)!=NULL)&&(strchr(line,'#')!=NULL)){
    }
  /* read in t data */
 /*printf("t data read start\n");*/
    idx2=0;
   // while(fgets(line,Maxlength,fp)!=NULL){
   do {
        jk=sscanf(line," %f %f %f %f",&indat[0], &indat[1], &indat[2], &indat[3]);
          if ((line!=NULL)&&(jk>3)){
            tcoltmp[idx2]=indat[0];
            Ecoltmp[idx2]=indat[1];
            Icoltmp[idx2]=indat[2];
           // printf("%d %d %g %g %g %g\n",idx2,jk,tcoltmp[idx2],Ecoltmp[idx2],Icoltmp[idx2],indat[3]);
            idx2++;
          }
    }
    while(fgets(line,Maxlength,fp)!=NULL);
    fclose(fp);
    totalvals=idx2+1;
    printf("total vals: %d\n",totalvals);
    /* reformat data into an Ecol, a tcol, and an I matrix*/
    idx1=0;idx2=0;idx3=0;
    Ecol[idx2]=Ecoltmp[idx1];
    tcol[idx3]=tcoltmp[idx1];
    Imat[idx3][idx2]=Icoltmp[idx1];
    idx1++;idx3++;
    while(idx1<totalvals){
      jk=idx1-1;
      if(Ecoltmp[idx1]==Ecoltmp[jk]){
        tcol[idx3]=tcoltmp[idx1];
         Imat[idx3][idx2]=Icoltmp[idx1];
         idx1++;idx3++;
      }
      else{
        idx3max=idx3;
        idx2++;idx3=0;
        Ecol[idx2]=Ecoltmp[idx1];
        tcol[idx3]=tcoltmp[idx1];
        Imat[idx3][idx2]=Icoltmp[idx1];
        idx1++;
      }
    }
   *ntvals=idx3max+1;*nEvals=idx2;
   printf("ntvals: %i idx: %i\n",*ntvals, idx3);
   free(Icoltmp);free(tcoltmp);free(Ecoltmp);free(line);
  } /* sns_source_load */
/*-------------------------------------------------------------
        End load file routines
--------------------------------------------------------------*/

/*----------------------------------------------------------------------
                routine to do a 1D linear interpolation
------------------------------------------------------------------------*/
/* given a point (x1,y1) on the low side of xdes and one (x2,y2) on the
high side of xdes return the interpolated y values */
#pragma acc routine
double linint(double xdes,double x1, double x2, double y1, double y2)
{
  double m;
  m=(y2-y1)/(x2-x1);
  return (m*(xdes-x1)+y1);
} /*linint */

#pragma acc routine
double linfuncint(double xdes, double xylen, double *vecx, double *vecy)
  {
  int idx;
  idx=0;
  while((vecx[idx]<xdes)&&idx<xylen){
     idx++;
    }
  if (idx>xylen){
      printf("SNS_source: linfuncint: error exceeded vector length");
    }
  if (vecx[idx]==xdes){
      return vecy[idx];
      }
   else
     {
     return linint(xdes,vecx[idx-1],vecx[idx],vecy[idx-1],vecy[idx]);
     }

  } /* linfuncint */
/*------------------------------------------------------------------------
            routine to perform a 1 d quadratic interpolation
--------------------------------------------------------------------------*/
/* given 2 points on the low side of xdes and one on the high side, return
a quadratically interpolated result */
#pragma acc routine
double quadint(double xdes,double x1, double x2,double x3, double y1, double
y2, double y3)
{
  double t1, t2, t3;
  t1=((xdes-x2)*(xdes-x3)*y1)/((x1-x2)*(x1-x3));
  t2=((xdes-x1)*(xdes-x3)*y2)/((x2-x1)*(x2-x3));
  t3=((xdes-x1)*(xdes-x2)*y3)/((x3-x1)*(x3-x2));
  return t1+t2+t3;
} /* quadint */

#pragma acc routine
double quadfuncint(double xdes, double xylen, double *vecx, double *vecy)
  {
  int idx;
  idx=1;
  while((vecx[idx]<xdes)&&idx<xylen){
     idx++;
    }
  if (idx>xylen){
      printf("SNS_source: quadfuncint: error exceeded vector length");
    }

   if (vecx[idx]==xdes){
      return vecy[idx];
      }
   else
     {
     return quadint(xdes,vecx[idx-2],vecx[idx-1],vecx[idx],vecy[idx-2],vecy[idx-1],vecy[idx]);
     }

  } /* quadfuncint */

/*-----------------------------------------------------------------
Functions for random energy generation
------------------------------------------------------------------*/
#pragma acc routine
double xonly(double x,double xylength,double *inxvec,double *inyvec)
{
  return linfuncint(x,xylength,inxvec,inyvec);
}
#pragma acc routine
double Pfunc(double x, double y,double xylength,double *inxvec,double *Pvec)
{
  return quadfuncint(x,xylength,inxvec,Pvec)-y;
}
  
/*----------------------------------------------------------------
Functions for random time generation
------------------------------------------------------------------*/
#pragma acc routine
double txonly(double t,double ntvals,double *txval,double *tyval)
{
  return linfuncint(t,ntvals,txval,tyval);
}
#pragma acc routine
double tPfunc(double t,double y,double ntvals,double *txval,double *tyval)
{
  return quadfuncint(t,ntvals,txval,tyval)-y;
}

 
/*-------------------------------------------------------------------
  integration routines
---------------------------------------------------------------------*/
double integtrap(double (*func)(double,double,double*,double*),double prev,double low,double high, int step,
  double len, double *xvec, double *yvec)
{
 double s,npts,stpsze,sum,x;
 int pw2, idx;
 if (step==1){
   return(s=0.5*(high-low)*((*func)(high, len, xvec,yvec)+(*func)(low, len, xvec,yvec)));
 }
 else{
   s=prev;
   for(pw2=1,idx=1;idx<step-1;idx++){
     pw2<<=1;
   }
   npts=pw2;
   stpsze=(high-low)/npts;
   x=low+0.5*stpsze;
   for(sum=0.0,idx=1;idx<=pw2;idx++,x+=stpsze){
     sum+=(*func)(x, len, xvec,yvec);
   }
   s=0.5*(s+(high-low)*sum/npts);
   return s;
 }
} /* integtrap */

double integ1(double (*func)(double,double,double*,double*),double low, double high, double err,
  double len, double *xvec, double *yvec)
{
  double out,outprev;
  int idx;
  out=integtrap(*func,0.0,low,high,1, len, xvec, yvec);
  outprev=out;
  out=integtrap(*func,out,low,high,2, len, xvec, yvec);
  /*printf("out %g outprev %g \n",out,outprev);*/
  idx=2;
  while(fabs(out-outprev)>err*fabs(out)){
    idx++;
    outprev=out;
    out=integtrap(*func,out,low,high,idx, len, xvec, yvec);
   /* printf("out %g outprev %g \n",out,outprev);*/
  }
  return out;
}
/*---------------------------------------------------------------------------
   Routine for finding zeros.
  Algorithm equivalent to rtbis from "Numerical Recipes in C: pg 354
 -----------------------------------------------------------------------------*/


double zero_find(double (*func)(double, double, double, double*, double*),
  double yval,double xmin,double xmax, double tol, double arg1, double *arg2, double *arg3)
{
  double xl,xh,f,fmid,xmid,dx,rtb;
  int max_iter;
  int iter_no;
  xl=xmin;
  xh=pow(10,(log10(xmin)+yval*(log10(xmax)-log10(xmin))));
  f=(*func)(xl,yval, arg1, arg2, arg3);
  fmid=(*func)(xh,yval, arg1, arg2, arg3);
  while (fmid*f>=0.0){
    xh=xh+(xh-xl)*2.0;
    fmid=(*func)(xh,yval, arg1, arg2, arg3);
  }
  dx=xh-xl;
  rtb=xl;
  max_iter = 10000;
  iter_no=0;
  while(fabs((*func)(rtb,yval, arg1, arg2, arg3))>tol && iter_no++<max_iter){
    dx=dx*0.5;
    xmid=rtb+dx;
    fmid=(*func)(xmid,yval, arg1, arg2, arg3);
    if (fmid<0){
      rtb=xmid;
    }
  }
 return rtb;
}

#pragma acc routine
double zero_find_gpu1(double yval,double xmin,double xmax, double tol, double arg1, double *arg2, double *arg3)
{
  double xl,xh,f,fmid,xmid,dx,rtb;
  int max_iter;
  int iter_no;
  xl=xmin;
  xh=pow(10,(log10(xmin)+yval*(log10(xmax)-log10(xmin))));
  f=Pfunc(xl,yval, arg1, arg2, arg3);
  fmid=Pfunc(xh,yval, arg1, arg2, arg3);
  while (fmid*f>=0.0){
    xh=xh+(xh-xl)*2.0;
    fmid=Pfunc(xh,yval, arg1, arg2, arg3);
  }
  dx=xh-xl;
  rtb=xl;
  max_iter = 10000;
  iter_no=0;
  while(fabs(Pfunc(rtb,yval, arg1, arg2, arg3))>tol && iter_no++<max_iter){
    dx=dx*0.5;
    xmid=rtb+dx;
    fmid=Pfunc(xmid,yval, arg1, arg2, arg3);
    if (fmid<0){
      rtb=xmid;
    }
  }
 return rtb;
}
#pragma acc routine
double zero_find_gpu2(double yval,double xmin,double xmax, double tol, double arg1, double *arg2, double *arg3)
{
  double xl,xh,f,fmid,xmid,dx,rtb;
  int max_iter;
  int iter_no;
  xl=xmin;
  xh=pow(10,(log10(xmin)+yval*(log10(xmax)-log10(xmin))));
  f=tPfunc(xl,yval, arg1, arg2, arg3);
  fmid=tPfunc(xh,yval, arg1, arg2, arg3);
  while (fmid*f>=0.0){
    xh=xh+(xh-xl)*2.0;
    fmid=tPfunc(xh,yval, arg1, arg2, arg3);
  }
  dx=xh-xl;
  rtb=xl;
  max_iter = 10000;
  iter_no=0;
  while(fabs(tPfunc(rtb,yval, arg1, arg2, arg3))>tol && iter_no++<max_iter){
    dx=dx*0.5;
    xmid=rtb+dx;
    fmid=tPfunc(xmid,yval, arg1, arg2, arg3);
    if (fmid<0){
      rtb=xmid;
    }
  }
 return rtb;
}
/*----------------------------------------------------------------------------
Routine for calculating Probability distribution
----------------------------------------------------------------------------*/

// Pcalc(xonly,llim,hlim,inxvec,Pvec,xylength,&idxstart,&idxstop, inyvec);
// xonly(double x,double xylength,double *inxvec,double *inyvec)
void Pcalc(double (*func)(double,double,double*,double*),
  double llim, double hlim, double *xvec, double *Prob, int veclen,
  int *idxstart, int *idxstop, double *inyvec)
{
  int idx1,idx2;
  double junk,Norm;
  idx1=0;
  while(xvec[idx1]<=llim){
     Prob[idx1]=0;
     idx1++;

  }
  if (idx1<1){
   printf("Error: lower energy limit is out of bounds\n");
   exit(0);
  }
  *idxstart=idx1;
   Prob[idx1]=integ1((*func),llim,xvec[idx1],0.001, veclen, xvec, inyvec);
   idx1++;
  while(xvec[idx1]<=hlim){
     junk=integ1((*func),xvec[idx1-1],xvec[idx1],0.001, veclen, xvec, inyvec);
     Prob[idx1]=(Prob[idx1-1]+junk);
     idx1++;
   }
   *idxstop=idx1;
   while(idx1<veclen){
     Prob[idx1]=1;
     idx1++;
   }

  /*Normalize all Probability values*/
    Norm=Prob[*idxstop-1];
  if (Norm>0){
    for(idx2=*idxstart;idx2<*idxstop;idx2++){
      Prob[idx2]=Prob[idx2]/Norm;
    }
  }
} /* Pcalc */
/*----------------------------------------------------------------------------
Routine for calculating t Probability distribution
----------------------------------------------------------------------------*/
// tPcalc(txonly,ltlim,htlim,tcol,tPvec,ntvals,&tidxstart,&tidxstop, txval,tyval);
// txonly(double t,double ntvals,double *txval,double *tyval)
void tPcalc(double (*func)(double,double,double*,double*),double llim, double hlim,
  double *xvec, double *Prob, int veclen, int *idxstart, int *idxstop,
  double *txval,double *tyval)
{
  int idx1,idx2;
  double junk,Norm;
  idx1=0;
  while(xvec[idx1]<=llim){
     Prob[idx1]=0;
     idx1++;

  }
  *idxstart=idx1;
   Prob[idx1]=integ1((*func),llim,xvec[idx1],0.001, veclen, txval, tyval);
  while(xvec[idx1]<=hlim){
     junk=integ1((*func),xvec[idx1-1],xvec[idx1],0.001, veclen, txval, tyval);
     Prob[idx1]=(Prob[idx1-1]+junk);
     idx1++;
   }
   *idxstop=idx1;
   while(idx1<veclen){
     Prob[idx1]=1;
     idx1++;
   }
   /* calculate normalization*/
   Norm=Prob[*idxstop-1];
   /*printf("Norm %f\n",Norm); */
  /*Normalize all Probability values*/
  if (Norm>0){
    for(idx2=*idxstart;idx2<*idxstop;idx2++){
      Prob[idx2]=Prob[idx2]/Norm;
      /*printf("%d %g \n",idx2,Prob[idx2])*/;
    }
  }
} /* tPcalc */

%}

DECLARE
%{
  double p_in;
  double *inxvec;
  #pragma acc shape(inxvec[0:500])
  double *inyvec;
  #pragma acc shape(inyvec[0:500])
  double *Pvec;
  #pragma acc shape(Pvec[0:500])
  int xylength;
  double *tcol;
  #pragma acc shape(tcol[0:200])
  double *Ecol;
  #pragma acc shape(Ecol[0:200])
  double *tPvec;
  #pragma acc shape(tPvec[0:500])
  double **Ptmat;
  #pragma acc shape(Ptmat[0:200][0:200])
  double EPmax;
  double EPmin;
  double INorm;
  double INorm2;
  int ntvals;
  int idxstart;
  int idxstop;
  int tidxstart;
  int tidxstop;
  int nEvals;
  double pmul;
%}

INITIALIZE
%{
  FILE *fp;
  double llim, hlim,ltlim,htlim,junk;
  double **Imat;
  int idx1,idx2;

  double tyval[500];
  double txval[500];

  Pvec=malloc(500*sizeof(double));
  inxvec=malloc(500*sizeof(double));
  inyvec=malloc(500*sizeof(double));
  tcol=malloc(200*sizeof(double));
  Ecol=malloc(200*sizeof(double));
  tPvec=malloc(500*sizeof(double));
  Ptmat=malloc(200*sizeof(double *));
  for(idx1=0;idx1<200;idx1++){
    Ptmat[idx1]=malloc(200*sizeof(double));
  }
  Imat=malloc(200*sizeof(double*));
  for(idx1=0;idx1<200;idx1++){
    Imat[idx1]=malloc(500*sizeof(double));
  }
  ltlim=0.1;
  htlim=1.8e3;
 /* read file */
  printf("%s%s\n","Loading moderator file ",filename);
   sns_source_load(filename,inxvec,inyvec,0,2,&xylength,tcol,Ecol,Imat,&ntvals,&nEvals);
 /* calculate probabilty distribution function points for use in interpolation routine */

 llim=inxvec[1];hlim=inxvec[xylength];
 printf("Start calculating probability distribution\n");
 /* calculate total number of neutrons in specified energy window */
 INorm2=integ1(xonly,Emin/1000.0,Emax/1000.0,0.001, xylength,inxvec,inyvec);
  Pcalc(xonly,llim,hlim,inxvec,Pvec,xylength,&idxstart,&idxstop,
    inyvec);
  /*calculate probability distribution as a function of t for each energy value */
  tyval[0]=Imat[0][0];
  //printf("outntvals %i\n",ntvals);
  //printf("%g \n",tyval[0]);
  for(idx1=0;idx1<nEvals;idx1++){
      for(idx2=0;idx2<ntvals;idx2++){
        //printf("idx2 %d idx1 %d tyval: %g\n",idx2,idx1,Imat[idx2][idx1]);
        tyval[idx2]=Imat[idx2][idx1];
        txval[idx2]=tcol[idx2];
      }
      tPcalc(txonly,ltlim,htlim,tcol,tPvec,ntvals,&tidxstart,&tidxstop,
        txval,tyval);
      for(idx2=0;idx2<ntvals;idx2++){
        Ptmat[idx2][idx1]=tPvec[idx2];
      }
   }
  /* Generate min and max Prob values corresponding to specified energy window*/
    /* use quadratic interpolation  */
   EPmax=quadfuncint(Emax/1000.0,xylength,inxvec,Pvec);
   EPmin=quadfuncint(Emin/1000.0,xylength,inxvec,Pvec);
  /* Calculate solid Angle */
  p_in = focus_xw*focus_yh/(dist*dist);
  for(idx1=0;idx1<200;idx1++){
    free(Imat[idx1]);
  }
  free(Imat);

  printf("Finished calculating probability distribution\n");
  pmul=1;
  pmul/=mcget_ncount();
%}
TRACE
%{
  double theta,phi,v,tauv,E,Eval,tval,randp;  
  double hdiv;
  double vdiv;
  double hdivmin,hdivmax,vdivmin,vdivmax;
  int idx1,idx3,Eidxl,Eidxh;
  double tyval[500];
  double txval[500];
  p=p_in;
  z=0;

  x = (rand01()-0.5)*xwidth; /* choose points uniformly distributed on the source */
  y = (rand01()-0.5)*yheight;

 hdivmax=atan((focus_xw/2.0-x)/dist);
 hdivmin=atan(-(focus_xw/2.0+x)/dist);
 vdivmax=atan((focus_yh/2.0-y)/dist);
 vdivmin=atan(-(focus_yh/2.0+y)/dist);

  theta = hdivmin + (hdivmax-hdivmin)*rand01(); /* Small angle approx. */
  phi = vdivmin + (vdivmax-vdivmin)*rand01();
  hdiv=theta;
  vdiv=phi;
  /* generate random numbers*/

   /*First generate E random value */
    randp=EPmin+rand01()*(EPmax-EPmin);
    /* find E value corresponding to random probability */
    #ifndef OPENACC
    Eval=zero_find(Pfunc,randp,inxvec[idxstart],inxvec[idxstop],1e-7,
      xylength,inxvec,Pvec);
    #else
    Eval=zero_find_gpu1(randp,inxvec[idxstart],inxvec[idxstop],1e-7,
      xylength,inxvec,Pvec);
    #endif
   /* from a known E value generate an emission time value */
   /* find the index of the E values that bracket the random E value */
   idx1=0;
   while((idx1<nEvals)&&(Ecol[idx1]<Eval)){
     idx1++;
   }
   Eidxh=idx1;
   Eidxl=idx1-1;
   /*calculate the interpolated t, P curve to determine t value from uniform random value*/
   for (idx3=0;idx3<ntvals;idx3++){
     tyval[idx3]=linint(Eval,Ecol[Eidxl],Ecol[Eidxh],Ptmat[idx3][Eidxl],Ptmat[idx3][Eidxh]);
     txval[idx3]=tcol[idx3];
   }
   randp=tyval[tidxstart]+rand01()*(tyval[tidxstop-1]-tyval[tidxstart]);
   if (randp>0.0){
     #ifndef OPENACC
     tval=zero_find(tPfunc,randp,txval[tidxstart],txval[tidxstop-1],1e-5,
        ntvals,txval,tyval); }
     #else
     tval=zero_find_gpu2(randp,txval[tidxstart],txval[tidxstop-1],1e-5,
        ntvals,txval,tyval); }
     #endif
    else{
       tval=0;}
  E = Eval*1000.0;  /* Convert Energy from Ev to meV */
  t = tval*1e-6;      /* Convert time from mus to S */
  v = SE2V*sqrt(E);
  /* Calculate components of velocity vector such that the neutron is within the focusing rectangle */
  vz = v*cos(phi)*cos(theta);   /* Small angle approx. */
  vy = v*sin(phi);
  vx = v*cos(phi)*sin(theta);

  p*=(xwidth*yheight/(0.1*0.12))*INorm2*pmul;

%}
FINALLY
%{
  int idxf;
  free(tPvec);
  free(inxvec);free(inyvec);free(Pvec);free(tcol);free(Ecol);
  for(idxf=0;idxf<200;idxf++){
    free(Ptmat[idxf]);
  }
  free(Ptmat);

%}

MCDISPLAY
%{
  double x1,y1,x2,y2;
  x1=-xwidth/2.0;y1=-yheight/2.0;x2=xwidth/2.0;y2=yheight/2.0;
  multiline(4,(double)x1,(double)y1,0.0,(double)x1,(double)y2,0.0,(double)x2,(double)y2,0.0,(double)x2,(double)y1,0.0,(double)x1,(double)y1,0.0);
%}

END