1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*******************************************************************************
*
* Mcstas, neutron ray-tracing package
* Copyright (C) 1997-2020, All rights reserved
* DTU Physics, Kongens Lyngby, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Source_pulsed
*
* %I
* Written by: Klaus Lieutenant, based on component 'Moderator' by K. Nielsen, M. Hagen and 'ESS_moderator_long_2001' by K. Lefmann
* Date : Aug 2020
* Origin: FZ Juelich
*
* A pulsed source for variable proton pulse lenghts
*
* %D
* Produces a long pulse spectrum with a wavelength distribution as a sum of up to 3 Maxwellian distributions and one of undermoderated neutrons
*
* It uses the time dependence of long pulses. Short pulses can, however, also be simulated by setting the proton pulse short.
*
* If moderator width and height are given, it assumes a rectangular moderator, and otherwise a circular
*
* Usage example:
* Source_pulsed(xwidth=0.04, yheight=0.04, Lmin=1.0, Lmax=3.0, t_min=0.0, t_max=0.5, dist=0.700, focus_xw=0.020, focus_yh=0.020,
* freq=96.0, t_pulse=0.000208, T1=325.0, I1=7.6e09, tau1=0.000170, I_um=2.7e08, chi_um=2.5)
*
* Parameters for some sources:
* HBS thermal source: xwidth=0.04, yheight=0.04, T1=325.0, I1=0.68e+12/freq, tau1=0.000125, n_mod=10, I_um=2.47e+10/freq, chi_um=2.5, t_pulse=0.016/freq, freq=96.0 or 24.0
* HBS cold source : radius=0.010, T1= 60.0, I1=1.75e+12/freq, tau2=0.000170, n_mod= 5, I_um=3.82e+10/freq, chi_um=0.9, t_pulse=0.016/freq, freq=24.0 or 96.0
* HBS bi-spectral : radius=0.022, r_i=0.010, T1= 60.0, I1=1.75e+12/freq, tau2=0.000170,
* T2=305.0, I2=0.56e+12/freq, tau1=0.000130, n_mod= 5, I_um=3.82e+10/freq, chi_um=2.5, t_pulse=0.016/freq, freq=24.0 or 96.0
*
* %P
* Input parameters:
*
* xwidth: [m] Width of the source
* yheight: [m] Height of the source
* radius: [m] Outer radius of the source
* r_i: [m] Radius of a central circle that is sorrounded by a ring of different temperature
* Lmin: [Ang] Lower edge of the wavelength distribution
* Lmax: [Ang] Upper edge of the wavelength distribution
* t_min: [s] Lower edge of the time interval
* t_max: [s] Upper edge of the time interval
* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.
* dist: [m] Distance from the source to the target
* focus_xw: [m] Width of the target (= focusing rectangle)
* focus_yh: [m] Height of the target (= focusing rectangle)
* freq: [Hz] Frequency of pulses
* t_pulse: [s] Proton pulse length
* T1: [K] Temperature of the 1st Maxwellian distribution, for r_i > 0 only for radii r in the range 0 < r < r_i
* I1: [1/(cm**2*sr)] Flux per solid angle of the 1st Maxwellian distribution (integrated over the whole wavelength range).
* tau1: [s] Pulse decay constant of the 1st Maxwellian distribution
* T2: [K] Temperature of the 2nd Maxwellian distribution, 0=none, for r_i > 0 only for radii r in the range r_i < r < radius
* I2: [1/(cm**2*sr)] Flux per solid angle of the 2nd Maxwellian distribution
* tau2: [s] Pulse decay constant of the 2nd Maxwellian distribution
* T3: [K] Temperature of the 3rd Maxwellian distribution, 0=none
* I3: [1/(cm**2*sr)] Flux per solid angle of the 3rd Maxwellian distribution
* tau3: [s] Pulse decay constant of the 3rd Maxwellian distribution
* n_mod: [1] Ratio of pulse decay constant to pulse ascend constant of moderated neutrons
* I_um: [1/(cm**2*sr)] Flux per solid angle for the under-moderated neutrons
* tau_um: [s] Pulse decay constant of under-moderated neutrons
* n_um: [1] Ratio of pulse decay constant to pulse ascend constant of under-moderated neutrons
* chi_um: [1/Ang] Factor for the wavelength dependence of under-moderated neutrons
* kap_um: [1] Scaling factor for the flux of under-moderated neutrons
*
* %E
*******************************************************************************/
DEFINE COMPONENT Source_pulsed
SETTING PARAMETERS (xwidth=0.0, yheight=0.0, radius=0.010, r_i=0.0,
Lmin, Lmax, t_min=0.0, t_max=0.001,
int target_index=1, dist=0.0, focus_xw=0.02, focus_yh=0.02, freq, t_pulse,
T1=0.0, I1=0.0, tau1=0.000125, T2=0.0, I2=0.0, tau2=0.0, T3=0.0, I3=0.0, tau3=0.0, n_mod=10,
I_um=0.0, tau_um=0.000012, n_um=5, chi_um=2.5, kap_um=2.2)
/* Neutron parameters: (x,y,z, vx,vy,vz, t, sx,sy,sz, p) */
SHARE
%{
/* Normalized Maxwellian distribution*/
#pragma acc routine
double Maxwell(double lmbd, double temp)
{
double a, M=0.0;
if (temp > 0.0 && lmbd > 0.0)
{ a = 949.29/temp;
M = 2.0*a*a*exp(-a/(lmbd*lmbd))/pow(lmbd,5);
}
return M;
}
/* distribution of under-moderated neutrons */
#pragma acc routine
double Mezei_N_fct(double lmbd, double chi, double kappa)
{
if (lmbd > 0.0)
return 1.0 / (1.0 + exp(chi*lmbd-kappa)) / lmbd;
else
return 0.0;
}
/* integral of the short pulse function */
#pragma acc routine
double Mezei_i_fct(double time, double tau, double n)
{
if (n > 1.0 && tau > 0.0)
return (exp(-time/(tau/n)) - n*exp(-time/tau)) / (n-1);
else
return 0.0;
}
/* Normalized long pulse function */
#pragma acc routine
double Mezei_I_fct(double time, double tau, double n, double length)
{
if (time <= 0.0 || tau <= 0.0 || n <= 1.0 || length <= 0.0)
return 0.0;
else if (time <= length)
return (Mezei_i_fct(time, tau, n)+1.0) / length;
else
return ( Mezei_i_fct(time, tau, n)
- Mezei_i_fct(time-length, tau, n)) / length;
}
%}
DECLARE
%{
double area; /* [cm^2] moderator surface area */
double t_period; /* [s] period of the pulse cycle */
double alpha; /* [1] duty cycle */
double p_in; /* [1/Ang/s] flux normalisation factor */
%}
INITIALIZE
%{
/* check of the input parameters */
if ( xwidth < 0.0 || yheight < 0.0 || radius < 0.0 || r_i < 0.0 || Lmin < 0.0 || Lmax < 0.0
|| dist < 0.0 || focus_xw < 0.0 || focus_yh < 0.0 || freq < 0.0 || t_pulse < 0.0
|| T1 < 0.0 || I1 < 0.0 || tau1 < 0.0 || T2 < 0.0 || I2 < 0.0
|| tau2 < 0.0 || T3 < 0.0 || I3 < 0.0 || tau3 < 0.0 || n_mod < 0.0
|| I_um < 0.0 || tau_um < 0.0 || n_um < 0.0 || chi_um < 0.0 || kap_um < 0.0)
{
printf("Source_pulsed: %s: Error: negative input parameter!\n"
"ERROR Exiting\n", NAME_CURRENT_COMP);
exit(-1);
}
if (Lmax <= Lmin || t_max <= t_min)
{
printf("Source_pulsed: %s: Error: wavelength or time parameters do not match!\nERROR Exiting\n", NAME_CURRENT_COMP);
exit(-1);
}
/* automatic distance */
if (target_index > 0 && dist==0.0)
{
Coords ToTarget;
double tx,ty,tz;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tx, &ty, &tz);
dist=sqrt(tx*tx+ty*ty+tz*tz);
}
/* pulse parameters */
t_period = 1.0/freq;
alpha = t_pulse / t_period;
/* area for different moderator shapes */
if (xwidth > 0.0 && yheight > 0.0)
{
area = 10000.0 * xwidth * yheight;
}
else if (radius > 0.0)
{
area = 10000.0 * PI*radius*radius;
}
else
{
printf("Source_pulsed: %s: Error: wavelength or time parameters do not match!\nERROR Exiting\n", NAME_CURRENT_COMP);
exit(-1);
}
p_in = (Lmax - Lmin) * (t_max - t_min) / mcget_ncount();
%}
TRACE
%{
double phi, /* [rad] orientation of the starting point for a spherical moderator */
r, /* [m] distance of the starting point from moderator center */
v, /* [m/s] speed of the neutron */
time, /* [s] */
lambda, /* [Ang] wavelength of the neutron */
xf, /* [m] horizontal position on the target */
yf, /* [m] vertical position on the target */
rf, /* [m] distance between point on moderator and point on target */
dx, /* [m] horizontal shift from moderator to target */
dy, /* [m] vertical shift from moderator to target */
Omega, /* [sr] solid angle of the target */
flux; /* [1/(cm^2 s Ang sr] flux(lambda,time) */
/* Choose the starting point on the moderator surface with uniform distribution for different moderator shapes */
if (xwidth > 0.0 && yheight > 0.0)
{
x = xwidth* (rand01() - 0.5);
y = yheight*(rand01() - 0.5);
}
else
{ phi = 2*PI*rand01();
r = sqrt(rand01())*radius;
x = r*cos(phi);
y = r*sin(phi);
}
z = 0.0;
/* Set zero polarization, choose wavelength and starting time */
sx = 0.0;
sy = 0.0;
sz = 0.0;
lambda = Lmin + (Lmax - Lmin) * rand01();
t = t_min + (t_max - t_min) * rand01();
/* Propagate to target */
randvec_target_rect_real(&xf, &yf, &rf, &Omega,
0, 0, dist, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2);
/* Length of the flight path */
dx = xf - x;
dy = yf - y;
rf = sqrt(dx*dx + dy*dy + dist*dist);
/* speed of the neutron */
v = 3956.0346 / lambda;
vx = v*dx/rf;
vy = v*dy/rf;
vz = v*dist/rf;
/* Weight: flux in [1/(cm^2 s Ang sr] */
flux = I_um * Mezei_N_fct(lambda, chi_um, kap_um) * Mezei_I_fct(t, tau_um, n_um, t_pulse);
if (r_i==0.0 || r <= r_i)
flux += I1 * Maxwell(lambda, T1) * Mezei_I_fct(t, tau1, n_mod, t_pulse);
if (r_i==0.0 || r > r_i)
flux += I2 * Maxwell(lambda, T2) * Mezei_I_fct(t, tau2, n_mod, t_pulse);
flux += I3 * Maxwell(lambda, T3) * Mezei_I_fct(t, tau3, n_mod, t_pulse);
p = flux * area* Omega * p_in; /* [1] neutrons per pulse */
p /= t_period; /* [1/s] time averaged intensity */
SCATTER;
%}
MCDISPLAY
%{
double edge; /* [m] x and y position on the circle */
if (dist > 0.0)
{
if (xwidth > 0.0 && yheight > 0.0)
{
rectangle("xy", 0,0,0, xwidth,yheight);
dashed_line(-xwidth/2, -yheight/2, 0, -focus_xw/2,-focus_yh/2, dist, 4);
dashed_line( xwidth/2, -yheight/2, 0, focus_xw/2,-focus_yh/2, dist, 4);
dashed_line( xwidth/2, yheight/2, 0, focus_xw/2, focus_yh/2, dist, 4);
dashed_line(-xwidth/2, yheight/2, 0, -focus_xw/2, focus_yh/2, dist, 4);
}
else
{
circle("xy", 0,0,0, radius);
if (r_i > 0.0)
circle("xy", 0,0,0, r_i);
edge = radius/sqrt(2.0);
dashed_line(-edge, -edge, 0, -focus_xw/2,-focus_yh/2, dist, 4);
dashed_line( edge, -edge, 0, focus_xw/2,-focus_yh/2, dist, 4);
dashed_line( edge, edge, 0, focus_xw/2, focus_yh/2, dist, 4);
dashed_line(-edge, edge, 0, -focus_xw/2, focus_yh/2, dist, 4);
}
}
%}
END
|