1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
/****************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Vertical_Bender_Down
*
* %I
* Written by: Andrew Jackson, Richard Heenan
* Date: August 2016, June 2017
* Version: $Revision$
* Origin: ESS
* Release: McStas 2.4
*
* Multi-channel bender curving vertically down.
*
* %D
* Based on Pol_bender written by Peter Christiansen
* Models a rectangular curved guide with entrance on Z axis.
* Entrance is on the X-Y plane. Draws a correct depiction of
* the guide with multiple channels - i.e. following components need to be
* displaced.
* Guide can contain multiple channels using horizontal blades
* Reflectivity modeled using StdReflecFunc and {R0, Qc, alpha, m, W} can be set
* for top (outside of curve), bottom (inside of curve) and sides
* (both sides equal), blades reflectivities match top and bottom (each channel is
* like a "mini guide").
* Neutrons are tracked, with gravity, inside the wall of a cylinder using distance
* steps of diststep1. Upon crossing the inner or outer wall, the final step is
* repeated using steps of diststep2, thus checking more
* closely for the first crossing of either wall. If diststep1 is too
* large than a "grazing incidence reflection" may be missed altogether.
* If diststep1 is too small, then the code will run slower!
* Exact intersection tmes with the flat sides and ends of the bender channel are calculated
* first in order to limit the time spent tracking curved trajectories.
* Turning gravity off will not make this run any faster, as the same method is used.
*
* 28/06/2017 still need validation against other codes (e.g. for gravity off case)
*
* Example:
* Vertical_Bender(xwidth = 0.05, yheight = 0.05, length = 3.0,
* radius = 70.0, nslit = 5, d=0.0005, diststep1=0.020, diststep2=0.002,
* rTopPar={0.99, 0.219, 6.07, 3.0, 0.003},
* rBottomPar={0.99, 0.219, 6.07, 2.0, 0.003},
* rSidesPar={0.99, 0.219, 6.07, 2.0, 0.003},
*
* See example instrument Test_Vert_Bender
*
* %BUGS
* Original code did not work with rotation about axes and gravity.
* This tedious tracking method should work (28/6/17 still under test) for a vertical bender, with optional
* rotation about x axis and gravity (and likely rotation about y axis but needs testing,
* and even perhaps rotation about z axis as in rotated local frame Gx then is non zero but the edge solver still works).
* Would also need test the drawing in trace mode).
*
* GRAVITY : Yes, when component is not rotated
*
* %P
* INPUT PARAMETERS:
* xwidth: Width at the guide entry (m)
* yheight: Height at the guide entry (m)
* length: length of guide along center (m)
* radius: Radius of curvature of the guide (+:curve up/-:curve down) (m)
* nchan: Number of channels (1)
* d: Width of spacers (subdividing absorbing walls) (m)
* endFlat: If endflat>0 then entrance and exit planes are parallel. (1)
* rTopPar: Parameters for reflectivity of bender top surface
* rBottomPar: Parameters for reflectivity of bender bottom surface
* rSidesPar: Parameters for reflectivity of bender sides surface
* diststep1: inital collision search steps for trajectory in cylinder when gravity is non zero ( 0.020 m)
* diststep2: final steps for trajectory in cylinder ( 0.002 m)
* debug: 0 to 10 for zero to maximum print out - reduce number of neutrons to run !
* alwaystrack default 0, 1 to force tracking even when gravity is off
*
* CALCULATED PARAMETERS:
*
* localG: Gravity vector in guide reference system (m/s/s)
* normalXXX: Several normal vector used for defining the geometry (1)
* pointXXX: Several points used for defining the geometry (1)
* rXXXParPtr: Pointers to reflection parameters used with ref. functions.
* i_bounce number of SCATTER events
*
* %L
*
* %E
****************************************************************************/
DEFINE COMPONENT Vertical_Bender
SETTING PARAMETERS (
vector rTopPar={0.99, 0.219, 6.07, 0.0, 0.003},
vector rBottomPar={0.99, 0.219, 6.07, 0.0, 0.003},
vector rSidesPar={0.99, 0.219, 6.07, 0.0, 0.003},
xwidth, yheight, length, radius, G=9.8, int nchan=1, d=0.0,
int debug=0, int endFlat=0, int drawOption=1, int alwaystrack=0, diststep1=0.020, diststep2=0.002,
int recurse_max=1000
)
/* Neutron parameters : (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "ref-lib"
/******************************************************************************
* horiz_tube_intersect: compute intersection with a horizontal tube, allowing for gravity
* i.e. one with length along x axis
* returns 0 when no intersection is found
* Written by: RKH 19/6/17 experimental routine!
* track neutron in small time segments, until it either exits bender channel, or hits top or bottom
* curved surface. The max time to track to, tMax, is already found by separately looking for hits with the side walls
* This is treated purely as 2d in y & z directions, not 3d, so no x coordinates are used.
* Compute R^2 for the neutron, at small time steps, in the local coordinate sytems, which has the
* the curved channel wall radii measured from the origin. Thus y and/or z may need to be adjusted before
* passing to this routine. Compare Rneutron^2 to Rtop^2 and Rbottom^2 to see if it has hit the channel wall.
* Here Rtop > Rbottom, regardless of which way up the bend is.
* idown = 1 for a downhill bender, where radius is negative, idown =0 for uphill bender, with radius positive
* Find a crossing using tstep1, then go back to start of that step and check with smaller steps, tstep2.
* NOTE we need the first of possibly two wall crossings that may be very close together, so have to go
* to start of previous step, then forwards again with smaller steps (i.e. cannot do a classic Newton-Raphson search here).
* If tstep1 is too large we may miss one or even two collisions with a wall.
* 8/8/17 makes sure that t11 cannot return zero, else can get stuck in infinite loop, so aim for mid point of the crossing step
*
* The search here amounts to finding the smallest positive root of a quartic, there is a routine here we could test:
* https://uk.mathworks.com/matlabcentral/fileexchange/59484-smallest-positive-real-root-of-a-quartic-equation?focused=6924415&tab=function
* though it is partly from a certain copyright book ...
* see also comments here http://people.csail.mit.edu/enikolova/project275.html and https://en.wikipedia.org/wiki/Quartic_function
*
*
*******************************************************************************/
// RKH need a c++ expert to check which variables should be passed by reference (or not) etc for greater efficiancy
// the original code passed *t11
int
horiz_tube_intersect(double *t11, double tStep1, double tStep2, double tMax, double y, double z,
double vy, double vz, double Rtop, double Rbottom, double Gy, double Gz, int idown, int debug )
{
double t, t2, Rtop2, Rbottom2, znew, ynew, Rneutron2;
if(debug>5)printf("hti Gy: %f,tStep1: %f,tStep2: %f,tMax: %f,y: %f, z: %f,vy: %f,vz: %f\n",Gy,tStep1,tStep2,tMax,y,z,vy,vz);
*t11 = 0.0;
t = 0.0;
Rtop2 = Rtop * Rtop;
Rbottom2 = Rbottom * Rbottom;
do{
t += tStep1;
t2 = 0.5*t*t;
znew = z + vz*t +Gz*t2;
ynew = y + vy*t +Gy*t2;
Rneutron2 = znew*znew + ynew*ynew;
if(debug>9)printf("t1: %f, z: %f, y: %f, r: %f\n",t, znew, ynew, sqrt(Rneutron2));
if ((Rneutron2 > Rtop2) || (Rneutron2 < Rbottom2)) {
t-=tStep1;
do {
t += tStep2;
t2 = 0.5*t*t;
znew = z + vz*t + Gz*t2;
ynew = y + vy*t + Gy*t2;
Rneutron2 = znew*znew + ynew*ynew;
if(debug>9)printf("t2: %f, z: %f, y: %f, r: %f\n",t, znew, ynew, sqrt(Rneutron2));
if (Rneutron2 > Rtop2){
*t11 = t - tStep2*0.5; // 8/8/17 subtract only half the step here, so t11 is never zero
return idown + 1; } // 2 for downhill, hit top; 1 for uphill hit bottom
else if (Rneutron2 < Rbottom2) {
*t11 = t - tStep2*0.5; // 8/8/17 subtract only half the step here, so t11 is never zero
return 2 - idown; } // 1 for downhill, hit bottom; 2 for uphill hit top
} while (t < tMax); // tMax limit is excessive here, but will guarantee success
} // end of IF
} while (t < tMax);
return 0; // escape without collision
/* horiz_tube_intersect */
}
%}
DECLARE
%{
Coords localG;
Coords normSides;
Coords normIn;
Coords normOut;
Coords pointLeft;
Coords pointRight;
Coords pointIn;
Coords pointOut;
%}
INITIALIZE%{
double angle;
if ((xwidth<=0) || (yheight <= 0) || (length <=0) || (radius == 0) || (diststep1 <=0) || (diststep2 <=0) ){
fprintf(stderr, "Vertical_Bender: %s: NULL or negative length scale!\n"
"ERROR (xwidth, yheight, length, radius, diststep1, diststep2). Exiting\n",
NAME_CURRENT_COMP);
exit(1);
}
if (drawOption<1 || drawOption>3) {
fprintf(stderr, "Vertical_Bender: %s: drawOption %ld not supported. Exiting.\n",
NAME_CURRENT_COMP, drawOption);
exit(1);
}
if (mcgravitation) {
localG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,-GRAVITY,0));
fprintf(stdout,"Vertical_Bender %s: Gravity is on, using local step by step tracking! Gxyz: %f, %f, %f\n",
NAME_CURRENT_COMP, localG.x, localG.y, localG.z);
// if (localG.x!=0 )
// fprintf(stderr,"WARNING: Vertical_Bender: %s: "
// "This component likely does not work with Gx component,\n",
// NAME_CURRENT_COMP);
} else
fprintf(stdout,"Vertical_Bender %s: Gravity is off!\n",NAME_CURRENT_COMP);
localG = coords_set(0, 0, 0);
// To be able to handle the situation properly where a component of
// the gravity is along the z-axis we also define entrance (in) and
// exit (out) planes
//AJJ - do these need to be rotated so that ingoing frame is correct?
// Don't know, but see RKH's test 3b where vertical bender arm rotated 90deg so is sideways,
// arm rotation of -90 after bender needed to get 2d plots correct
angle = length/radius;
normIn = coords_set(0, 0, 1);
if (endFlat)
normOut = coords_set(0, 0, 1);
else
normOut = coords_set(0, sin(angle), cos(angle));
pointIn = coords_set(0, 0, 0);
pointOut = coords_set(0, radius-radius*cos(angle), radius*sin(angle));
// Top and bot plane (+y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
// and the top point (0, yheight/2, 0) and bot point (0, -yheight/2, 0)
// A normal vector is (0, 1, 0)
normSides = coords_set(1, 0, 0);
pointLeft = coords_set(xwidth/2, 0, 0);
pointRight = coords_set(-xwidth/2, 0, 0);
%}
TRACE
%{
// RKH there is no "stuck in infinite loop" checking here ...
// RKH not used const double whalf = 0.5*xwidth; /* half width of guide */
double Gx, Gy, Gz;
const double hhalf = 0.5*yheight; /* half height of guide */
// RKH, not used const double z_off = radius*sin(length/radius); /* z-comp of guide length */
const double dThreshold = 1e-10; /* distance threshold */
const double tThreshold = dThreshold/sqrt(vx*vx + vy*vy + vz*vz);
double angle_z_vout; /* angle between z-axis and v_out */
//Variables for multiple slits
const double channelWidth = yheight/nchan; // slitWidth
const double bladeHalf = 0.5*d; /* half width of spacers */
int channelHit; // decide which channel is hit
double posInChannel; // position in channel
double t11, theta, alpha, endtime, phi;
double weight;
double Rtop; /* larger radius of channel */
double Rbottom; /* smaller radius of channel */
double absR = fabs(radius);
int i_bounce = 0;
if (mcgravitation) {
coords_get(localG, &Gx, &Gy, &Gz);
}
else
Gy = Gz =0;
// are we tracking the neutron inside the cylindrical cross section or not
int itrack = 0;
if (Gy != 0 || Gz != 0 ) itrack = 1;
if (alwaystrack == 1 ) itrack = 1;
int idown = 0;
if (radius<0)
idown = 1;
/* Propagate neutron to entrance */
PROP_Z0;
if (!inside_rectangle(x, y, xwidth, yheight))
ABSORB;
if (nchan>1){
// check if neutron gets absorbed in spacers
posInChannel = fmod(y+hhalf, channelWidth);
if(posInChannel <= bladeHalf ||
posInChannel >= channelWidth-bladeHalf)
ABSORB;
// determine which channel neutron enters, (don't really need channelHit, but its nice to know it, there may be a more elegant way here still)
if (idown == 1)
channelHit = (int)((y+hhalf)/channelWidth); // downhill, channels 0,1,2,3 from bottom to top
else
channelHit = (int)((hhalf-y)/channelWidth); // uphill, channels 0,1,2,3 from top to bottom
// Modify radii according to the channel entered, Rtop is always the larger here (could have renamed it)
Rtop = absR - hhalf +(channelHit+1)*channelWidth - bladeHalf;
Rbottom = absR - hhalf + channelHit*channelWidth + bladeHalf;
if(debug > 0)
printf("\nchannelHit: %d/%f, idown:%i, Rtop: %f, Rbottom: %f\n",
channelHit, (y+hhalf)/channelWidth, idown, Rtop, Rbottom);
} else { // only 1 slit
Rtop = absR + hhalf;
Rbottom = absR - hhalf;
}
int counter=0;
for(;;) {
counter++;
double tLeft, tRight, tTop, tBot, tIn, tOut, tMirror;
double tUp, tSide, time, endtime;
double R, Q;
Coords vVec, xVec;
double vel_yz;
int ibend, ibendnew; // 1 bottom, 2 top, 3 left, 4 right, 5 exit, 6 entrance, 0 no collision
double tStep1, tStep2, tMax; // long & short time step (calc from diststep1 & diststep2); longest time to track until in top/bottom of bender channel
tMax=0;
xVec = coords_set(x, y, z);
vVec = coords_set(vx, vy, vz);
// RKH has simplified the logic of the original here, to use ibend integer to keep up with the fate of the neutron,
// and to avoid repeatedly comparing double precision time values
ibend = 0;
//solve for transport to flat sides of bender,
// could assume we can only hit either right or left depending on vx <0 or >0, but not both, however a VERY slow neutron in a narrow channel
// could hit both sides in a horizontal bender, so check both separately, note these have gravity.
// solve_2nd_order is in mccode-r.c, with 2nd param NULL it finds the smallest positve solution to A.t^2 + B.t + C = 0
solve_2nd_order(&tLeft, NULL, 0.5*coords_sp(normSides,localG),
coords_sp(normSides, vVec),
coords_sp(normSides, coords_sub(xVec, pointLeft)));
if(tLeft>tThreshold){ tMax = tLeft;
ibend = 3;}
solve_2nd_order(&tRight, NULL, 0.5*coords_sp(normSides,localG),
coords_sp(normSides, vVec),
coords_sp(normSides, coords_sub(xVec, pointRight)) );
if ( (tRight > tThreshold) && ( (tRight < tMax) || ibend == 0)) {tMax = tRight;
ibend =4; }
// solve transport for entrance & exit planes of bender
solve_2nd_order(&tIn, NULL, 0.5*coords_sp(normIn,localG),
coords_sp(normIn, vVec),
coords_sp(normIn, coords_sub(xVec, pointIn)));
if( (tIn>tThreshold ) && (tIn < tMax || ibend ==0)){ tMax = tIn;
ibend = 6;}
solve_2nd_order(&tOut, NULL, 0.5*coords_sp(normOut,localG),
coords_sp(normOut, vVec),
coords_sp(normOut, coords_sub(xVec, pointOut)));
if( (tOut>tThreshold) && (tOut < tMax || ibend ==0)){ tMax = tOut;
ibend = 5;}
tStep1 = diststep1/coords_len(vVec); // could just use vz, but would come unstuck if vz=0, so play safe here
tStep2 = tStep1*diststep2/diststep1;
/* Find intersection points with top and bottom (curved) guide walls */
if(debug>4)printf("get1 Gy: %f,tStep1: %f,tStep2: %f,tMax: %f\n",Gy,tStep1,tStep2,tMax);
// adjust y so centre of bender arcs are at origin
double yshift = y - radius;
// either track in steps
// RKH 08/08/17 oops, issue here, getting stuck when returning t11 = 0
if ( itrack == 1){
ibendnew = horiz_tube_intersect(&t11, tStep1, tStep2, tMax, yshift, z, vy, vz,
Rtop, Rbottom, Gy, Gz, idown, debug);
if(debug > 3)
printf("ibend: %i, ibendnew: %i, tLeft: %f,tRight: %f,tIn: %f,tOut: %f,t11: %f\n",
ibend,ibendnew,tLeft,tRight,tIn,tOut,t11);
if (ibendnew != 0 ) { ibend = ibendnew;
tMax = t11;} // by definition here, t11 <= tMax
}
else{
// or if no gravity, solve straight line intersecting circles
double AA = (vy*vy + vz*vz);
double BB = 2.0*( z*vz + yshift*vy);
double CC = z*z + yshift*yshift;
solve_2nd_order(&t11, NULL, AA, BB, (CC - Rtop*Rtop));
if( (t11>tThreshold) && (t11 < tMax || ibend ==0)){ tMax = t11;
ibend = idown + 1;}
solve_2nd_order(&t11, NULL, AA, BB, (CC - Rbottom*Rbottom));
if( (t11>tThreshold) && (t11 < tMax || ibend ==0)){ tMax = t11;
ibend = 2 - idown;}
}
if(debug > 3)
printf("Rtop: %f, Rbottom: %f, yshift: %f, z: %f, vy: %f, vz: %f t11: %f, Gy: %f, Gz: %f\n",
Rtop, Rbottom, y-radius, z, vy, vz, t11, Gy, Gz);
// RKH at this point ibend should not be zero ! - but it often is.... Also why won't ABSORB work here?
if (ibend == 0){
printf("ERROR? ibend: %i, ibendnew: %i, tLeft: %f,tRight: %f,tIn: %f,tOut: %f,t11: %f\n",
ibend,ibendnew,tLeft,tRight,tIn,tOut,t11);
break;
}
// Has the neutron left the guide? Note we pass put the number pf bounces.
// RKH - presume that somewhere else the neutron is propagated into next component??
if (ibend > 4 ) break;
if (mcgravitation) {
// coords_get(localG, &Gx, &Gy, &Gz); // RKH works fine with this commented out
if(debug>4)printf("get2 Gxyz: %f,%f,%f\n",Gx,Gy,Gz);
PROP_GRAV_DT(tMax,Gx,Gy,Gz); // this is in PSI_DMC.c, updates mcnlx, mcnvx etc.
}
else
PROP_DT(tMax); // this actually checks for gravity, but repeats component gravity vector rotation
// RKH depending how well we found the intersection, the neutron may not be exactly at the top or bottom wall.
// The reflection angle is being calculated for the wall using new z value.
SCATTER;
i_bounce += 1;
/* Find reflection surface */
if(ibend == 1 || ibend ==2) { /* bottom or top surface */
if(ibend == 2){
if(idown == 1)
R = -Rtop;
else
R = Rbottom;}
else
{if(idown == 1)
R = -Rbottom;
else
R = Rtop;}
phi = atan(vy/vz); /* angle of neutron trajectory */
alpha = asin(z/R); /* angle of guide wall */
theta = fabs(phi-alpha); /* angle of reflection */
angle_z_vout = 2.0*alpha - phi;
vel_yz = sqrt(vy*vy + vz*vz); /* in plane velocity */
vz = vel_yz*cos(angle_z_vout);
vy = vel_yz*sin(angle_z_vout);
} else { /* left or right walls */
theta = fabs(atan(vx/vz));
vx = -vx;
}
/* Let's compute reflectivity! */
Q = 2.0*sin(theta)*sqrt(vx*vx + vy*vy + vz*vz)*V2K;
/* and the probability ... */
if (ibend == 2) {
StdReflecFunc(Q, rTopPar, &weight);
if (debug > 0) fprintf(stdout, "\tTop hit:\n");
} else if (ibend == 1) {
StdReflecFunc(Q, rBottomPar, &weight);
if (debug > 0) fprintf(stdout, "\tBottom hit:\n");
} else if (ibend == 4) {
StdReflecFunc(Q, rSidesPar, &weight);
if (debug > 0) fprintf(stdout, "\tRight hit:\n");
} else if (ibend == 3) {
StdReflecFunc(Q, rSidesPar, &weight);
if (debug > 0) fprintf(stdout, "\tLeft hit:\n");
}
/* Check that weight is meaningful. If not force it.*/
if (weight <= 0) ABSORB;
if (weight > 1) weight = 1;
/* Twiddle the neutron weight */
p *= weight;
if(p == 0) {
// Neutron is dead. Kill it!
ABSORB;
break;
}
if (counter>recurse_max) {
// Neutron is dead. Kill it!
ABSORB;
break;
}
}
%}
MCDISPLAY
%{
double y1, y2, z1, z2;
const int n = 90;
double yplot[90], zplot[90];
int ns = 0;
int j = 1;
const double lengthOfGuide = sin(length/radius)*radius;
const double channelWidth = yheight/nchan;
double R = 0; /* radius of arc */
int nChansMax = nchan;
int nMax = n;
if (lengthOfGuide<=0)
exit(fprintf(stdout,"Vertical_bender: %s: Negative guide length ! lengthOfGuide=%g\n",
NAME_CURRENT_COMP, lengthOfGuide));
if (drawOption==2) {
if(nChansMax>20)
nChansMax = 20;
nMax = 40;
} else if (drawOption==3) {
if(nChansMax>5)
nChansMax = 5;
nMax = 10;
}
magnify("xy");
// draw opening
rectangle("xy", 0, 0, 0, xwidth, yheight);
for(ns=0; ns < nChansMax+1; ns++) {
// to make sure the sides are drawn properly
if(ns==nChansMax && nChansMax<nchan)
ns=nchan;
// calculate x for this R
R = radius - 0.5*yheight + ns*channelWidth;
for(j=0; j<nMax; j++) {
if(endFlat) {
if(ns==0) // only calculate once
zplot[j] = j*lengthOfGuide/(double)(nMax-1);
} else
zplot[j] = R*sin(length/radius * (double)j/(double)(nMax-1));
if(radius>0)
yplot[j] = radius - sqrt(R*R - zplot[j]*zplot[j]);
else
yplot[j] = radius + sqrt(R*R - zplot[j]*zplot[j]);
}
// To be able to draw end we store some of the point values
if(ns==0) { // first wall
y1 = yplot[nMax-1];
z1 = zplot[nMax-1];
} else if(ns==nchan) { //last wall
y2 = yplot[nMax-1];
z2 = zplot[nMax-1];
}
for(j=0; j<nMax-1; j++) {
line(0.5*xwidth, yplot[j], zplot[j], 0.5*xwidth, yplot[j+1], zplot[j+1]);
line(-0.5*xwidth, yplot[j], zplot[j], -0.5*xwidth, yplot[j+1], zplot[j+1]);
}
}
// draw end gap
line(0.5*xwidth, y1, z1, 0.5*xwidth, y2, z2);
line(0.5*xwidth, y1, z1, -0.5*xwidth, y1, z1);
line(-0.5*xwidth, y2, z2, 0.5*xwidth, y2, z2);
line(-0.5*xwidth, y1, z1, -0.5*xwidth, y2, z2);
%}
END
|