File: ESS_BEER_MCPL.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (403 lines) | stat: -rw-r--r-- 12,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*******************************************************************************
* 
* Instrument: ESS_BEER_MCPL
* 
* %Identification
* Written by: Jan Saroun, saroun@ujf.cas.cz
* Date: June 2017
* Origin: NPI Rez
* %INSTRUMENT_SITE: ESS
* Version: 1.1, 27/11/2018 
* ToF Diffractometer BEER@ESS with MCPL input at the sample slit.
*
* %Description 
*
* Secondary part of the ToF diffractometer BEER@ESS. It takes MCPL file at the input as the source 
* of primary beam in front of the sample.
* Results:
* 1) xy, divergence, lambda and ToF_lambda plots of the primary beam (monitors the MCPL content)
* 2) projections of the sampling volume defined by the primary slit and secondary radial collimator  
* 3) Intensity vs. dhkl plot, using NPI_tof_dhkl_detector.comp
* 4) 2D plot (ToF,2theta),  using NPI_tof_theta_monitor
*  
* Modulation mode: 
* If modul=1, a modulation mode of BEER is assumed: the primary beam is modulated by a chopper placed close to the source.
* (set the lc distance appropriately). The NPI_tof_dhkl_detector.comp then performs data reduction in event mode, using 
* the given modulation parameters: lam0, mod_frq, mod_twidth and a table with primary dhkl estimates (dhkl.dat should be 
* in the current directory). As a result, the diffractogram with recombined peaks is produced, together with a 2D map 
* of estimated valid, empty and overlap regions on the ToF-2theta diagram. 
*
* If module=0, modulation parameters are ignored and the NPI_tof_dhkl_detector.comp performs a standard event based 
* data reduction producing a diffractogram on the basis of given nominal values of lam0 and distances.
* 
* (See NPI_tof_dhkl_detector.comp for more details)
* 
* NOTE: some instrument parameters are hard coded and have to be edited in the INITIALIZE and RUN sections.
*
* To use, please copy the relevant mcpl files from your $MCSTAS/data folder to the curring working folder
*
* Example 1: 
*  Simulation in medium resolution mode with pulse shaping choppers, wavelength range centred at 2 AA - use:
*  ESS_BEER_MCPL input=BEER_MR.mcpl repetition=50 pwdfile=duplex.laz lc=6.65 lam0=2 dlam=1.8 omega=45 chi=90 colw=1 modul=0 mod_frq=2240 mod_twidth=0.0029 mod_shift=0 only_event=-1 pinc=0.1 ptra=0 strain=0 ustrain=0 
*  Detector: psdtof_I=276.842
*
* Example 2: 
*  Simulation in the modulation mode, using the modulation chopper MCB with 8 slits (4 deg wide) rotating at 280 Hz. Wavelength range centred at 2 AA - use:
*  ESS_BEER_MCPL input=BEER_MCB.mcpl repetition=50 pwdfile=duplex.laz lc=9.35 lam0=2 dlam=1.8 omega=45 chi=90 colw=1 modul=1 mod_frq=2240 mod_twidth=0.0029 mod_shift=0 only_event=-1 pinc=0.1 ptra=0 strain=0 ustrain=0 
*  Detector: psdtof_I=98.3885
*
* %Example: input=BEER_MR.mcpl repetition=50 lc=6.65 modul=0 mod_twidth=0.0029 Detector: psdtof_I=138.421
* Example: input=BEER_MCB.mcpl repetition=50 lc=9.35 modul=1 mod_twidth=0.0029 Detector: psdtof_I=49.1942
*
* %Parameters
*
* input: [str]      Input MCPL file	
* repetition: [1]    Number of loops through the MCPL file	
* pwdfile: [str]    Input sample file for PowderN.comp
* lc: [m]           distance of the pulse definition chopper 
* lam0: [AA]        nominal wavelength (centre of the frame, determines the chopper phase) 
* dlam: [AA]        wavelength band width (only for filtering MCPL input and plot ranges)
* omega: [deg]      sample orientation (y-axis)
* chi: [deg]        sample orientation (z-axis)
* colw: [mm]        collimator width (0.5, 1, 2, 3 or 4)
* modul: [0|1]      modulation mode switch
* mod_frq: [Hz]     modulation frequency (chopper frequency x number of slits)
* mod_twidth: [s]   modulation frame width (should be ~> ESS pulse width)
* mod_shift: []     assumed line shift introduced to NPI_tof_dhkl_detector (modulation mode only)
* only_event: [1]   if > -1, filters out events with line_info.itype<>only_event after PowderN sample
* ptra: [ ]         p_transmit value passed to PowderN.comp
* pinc: [ ]         pinc value passed to PowderN.comp
* strain: [ppm]     Macro-strain (peak shift)
* ustrain: [ppm]    Micro-strain (peak broadening)
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ESS_BEER_MCPL(string input="BEER_MR.mcpl", int repetition=50, string pwdfile="duplex.laz", 
lc=6.65, lam0=2.0, dlam=1.8, omega=45, chi=90, colw=1, modul=0, mod_frq=2240, mod_twidth=0.0029, mod_shift=0,
only_event=-1, pinc=0.1, ptra=0.0, strain=0, ustrain=0)
DEPENDENCY "-DMCPLPATH=GETPATH(data)"

DECLARE
%{

  char optSGV1[256];
  char optSGV2[256]; 
  double col_ang,col_angv,col_h1,col_h2,col_rad,col_len,col_d;
  int col_ns;
  double mask_w,mask_dist,mask_h; 
  double det_th1,det_Linst,det_th2,det_t0,det_d1,det_d2,det_Lc,det_rad;
  double det_mod_dt, det_mod_twidth; 
  int det_modulation;
  char dhklTable[256];    
  double Lmin, Lmax, Emin, Emax;
 
  // perform r = m*v
  void MXV(Rotation m, double v[3], double r[3]) 
  {
        int i,j,k;
		for (i=0;i<3;i++) {   
			r[i]=0;  
			for (j=0;j<3;j++) { 
				r[i] += m[i][j]*v[j];
			}
		}
  };
  Rotation smi;
  int filt;
  double tof;
  #pragma acc declare create(smi,filt,tof)
%}

USERVARS
%{
  double scX;
  double scY;
  double scZ;
  double scP;
%}

INITIALIZE
%{
double hm = 2*PI*K2V; // h/m_n
printf("Using the input file: %s\n", input);
printf("Using the sample file: %s\n", pwdfile);

/*
----------------------------
Set instrument parameters
----------------------------
*/ 
double Linst=158; // source - sample distance


/* Collimator (ENGIN-X system) 
--------------------------------*/
const double cold[5]={0.100, 0.160, 0.310, 0.410, 0.490};  
col_ang=30; // horizontal angle
col_angv=30; // vertical angle
col_d=0.0001;
col_ns=160;
col_len=0.35;
// select distance according to width, allowed values 0.5, 1, 2, 3, 4
if (colw==0.5) {
	col_rad=cold[0];
} else if (colw==1) { 
	col_rad=cold[1];
} else if (colw==2) {
	col_rad=cold[2];
} else if (colw==3) {
	col_rad=cold[3];
} else if (colw==4) {
	col_rad=cold[4];
} else { 
	printf("WARNING: invalid collmator width (%g), selecting 2 mm.\n", colw);
	col_rad=cold[2];
}

// calculate height (add max. sample height 2 cm)
col_h1=0.02+2*col_rad*tan(col_angv*DEG2RAD/2);
col_h2=0.02+2*(col_rad+col_len)*tan(col_angv*DEG2RAD/2);
printf("INFO: Collimator radius=%g, height=%g -> %g\n",col_rad,col_h1,col_h2);

// mask before collimator
mask_w=2*col_rad*fabs(tan(col_ang*0.5*DEG2RAD));
mask_h=col_h1; 
mask_dist=col_rad*cos(col_ang*0.5*DEG2RAD)-0.01;

/* Detector parameters 
--------------------------------*/
// angular range
det_th1=75;
det_th2=105;
// detection radius
det_rad=2;
// distance from the source to the detector
det_Linst=Linst+det_rad;
// distance moderator - pulse chopper
det_Lc=lc;
// chopper delay
det_t0=lc/(hm/lam0);
// dhkl range
det_d1=0.8;
det_d2=2.4;

/* Modulation parameters 
--------------------------------*/
det_modulation=modul;
det_mod_dt=1/mod_frq;
det_mod_twidth=mod_twidth;

/* Sample settings 
--------------------------------*/
// d0 table for modulation mode
sprintf(dhklTable,"dhkl.tab");
// set sample orientation
Rotation sm;
rot_set_rotation(sm, 0.0,omega*DEG2RAD,chi*DEG2RAD); 
rot_transpose(sm, smi);
tof=det_Linst/hm*lam0*1e6; // tof in [us]
filt=only_event;

#pragma acc update device(smi,tof,filt)

/* 2D plot of the sampling gauge volume, in mm*/
sprintf(optSGV2,"user1 bins=201 limits=[-5,5], user2 bins=201 limits=[-5,5]");
/* 2D plot of the sampling gauge volume, in mm*/
sprintf(optSGV1,"user1 bins=201 limits=[-5,5]");

/* Calculate MCPL_input parameters 
-----------------------------------*/
double L2E;
Lmin = lam0 - 0.5*dlam;
Lmax = lam0 + 0.5*dlam;
L2E = pow(2*PI*K2V,2)*VS2E;
Emin = L2E/pow(Lmax,2);
Emax = L2E/pow(Lmin,2);

/* Messages 
--------------------------------*/
printf("Chopper delay = %g, mod_period = %g [ms]\n", det_t0*1000, det_mod_dt*1000);
printf("Mean ToF [ms] = %g\n", tof/1000);
printf("Selected energy range: %g to %g meV\n", Emin, Emax);
%}

TRACE
 
COMPONENT Origin = Progress_bar()
  AT (0, 0, 0) ABSOLUTE
  
/* Read neutrons from an mcpl file. */
COMPONENT src = MCPL_input(filename=input, polarisationuse=0, verbose=0, Emin=Emin, Emax=Emax, repeat_count=repetition, v_smear=0, pos_smear=0.0001, dir_smear=0.001)
AT( 0,0,0) RELATIVE PREVIOUS

COMPONENT xymon = PSD_monitor(
    nx=100, 
    ny=100,  
    filename="xymon.dat", 
    xwidth=0.01,  
    yheight=0.01,  
    restore_neutron=1) 
AT (0, 0, 0.001) RELATIVE src 

COMPONENT lmon = L_monitor( 
    nL=60, 
    filename="lmon.dat", 
    xwidth=0.05, 
    yheight=0.05, 
    Lmin=Lmin,  
    Lmax=Lmax, 
    restore_neutron=1)
AT (0, 0, 0.002) RELATIVE src   

COMPONENT hdiv_mon = Div1D_monitor(
    ndiv = 100, filename = "hdiv.dat", xwidth = 0.05,
    yheight = 0.05, maxdiv = 0.5, restore_neutron = 1)
  AT (0, 0, 0.003) RELATIVE src


COMPONENT toflam = TOFLambda_monitor(
    nL = 400, nt = 400, tmin = 70e3, tmax = 90e3,
    filename = "toflam.dat", xwidth = 0.05, yheight = 0.05,
    Lmin = 1.9, Lmax = 2.1, restore_neutron = 1)
  AT (0, 0, 0.003) RELATIVE src


/* Place the sample axis to the correct distance after the MCPL_input.
Depends on the configuration of the primary beam simulation. Here we assume 40 mm.*/  
COMPONENT Sample_axis = Arm() 
AT (0, 0, 0.04) RELATIVE src
ROTATED (0, 0, 0) RELATIVE src

/* Detector arm - defines scattering angle at the detector centre. */ 
COMPONENT Detector_arm = Arm() 
AT (0, 0, 0) RELATIVE Sample_axis
ROTATED (0, 90, 0) RELATIVE Sample_axis

COMPONENT sample = PowderN(
    reflections=pwdfile, 
    yheight=0.05,
    radius=0.0035, 
	d_omega=col_ang,
    d_phi=col_angv, 
	tth_sign=1,
//	sigma_abs=2.56,
//	sigma_inc=0.4,
 //   density=7.87,
	p_transmit=ptra, 
	p_inc=pinc,
	Strain=strain*1e-6,
	delta_d_d=ustrain*1e-6,
	focus_flip=0, 
	target_index=1) 
AT (0, 0, 0) RELATIVE Sample_axis
ROTATED (0, omega, chi) RELATIVE Sample_axis
EXTEND %{
  /*if ((filt>-1) && (itype!=filt)) {
 ABSORB; 
 }*/
// gauge coord. in mm
double r0[3] = {x,y,z};
double r[3]; 
MXV(smi, r0, r);
scX = r[0]*1000; 
scY = r[1]*1000;
scZ =  r[2]*1000;
scP = p; 
%}

/* Sample focuses at this component. */
COMPONENT col_mask = Slit(
    xwidth = mask_w, yheight = mask_h)
  AT (0, 0, mask_dist) RELATIVE Detector_arm

COMPONENT rad2 = Exact_radial_coll(
    theta_min=-col_ang*0.5,  
    theta_max=col_ang*0.5,  
    nslit=col_ns, 
    radius=col_rad, 
    length=col_len, 
    h_in=col_h1, 
    h_out=col_h2,  
	d=col_d, 
    verbose=1)
AT (0, 0, 0) RELATIVE Detector_arm

/* Gauge volume, XZ plot */
COMPONENT MonNDXZ = Monitor_nD(xwidth=2, yheight=2, user1="scX",
  username1="X, mm", user2="scZ", username2="Z, mm", options=optSGV2,
  filename="SGV_xz.dat", 
  restore_neutron=1) 
  AT (0, 0, col_rad+col_len+0.01) RELATIVE Detector_arm
 
 /* Gauge volume, X plot */
COMPONENT MonNDX = Monitor_nD(xwidth=2, yheight=2, user1="scX",
  username1="X, mm", options=optSGV1,
  filename="SGV_x.dat",   
  restore_neutron=1) 
  AT (0, 0, col_rad+col_len+0.01) RELATIVE Detector_arm
  
   /* Gauge volume, Y plot */
COMPONENT MonNDY = Monitor_nD(xwidth=2, yheight=2, user1="scY",
  username1="Y, mm", options=optSGV1,
  filename="SGV_y.dat", 
  restore_neutron=1) 
  AT (0, 0, col_rad+col_len+0.01) RELATIVE Detector_arm

   /* Gauge volume, Z plot */
COMPONENT MonNDZ = Monitor_nD(xwidth=2, yheight=2, user1="scZ",
  username1="Z, mm", options=optSGV1,
  filename="SGV_z.dat", 
  restore_neutron=1)
  AT (0, 0, col_rad+col_len+0.01) RELATIVE Detector_arm
  
  /* Detector with event mode data reduction.
  Generates 1D diffractogram and a 2D overlap map (in modulation mode).
  Should be centered at the sample axis and aligned with the primary beam.
  */ 
  COMPONENT dhklmon = NPI_tof_dhkl_detector(  
	nd=3000, 
	filename="dhkl.dat",  
	yheight=1.0, 
	zdepth=0.01, 
	radius=2, 
	amin=det_th1,  
	amax=det_th2, 
	d_min=det_d1,  
	d_max=det_d2, 
	time0=det_t0,
	Linst=det_Linst, 
	Lc = det_Lc,
	res_x=0.002,    
	res_y=0.005, 
	res_t=1e-6,    
	mu=1.0,  
	modulation=det_modulation,    
	mod_dt=det_mod_dt,    
	mod_twidth=det_mod_twidth ,    
	mod_shift=mod_shift,
	mod_d0_table=dhklTable,  
	restore_neutron=1)  
  AT (0, 0, 0) RELATIVE Sample_axis  
 
 /* ToF vs. 2theta map */
  COMPONENT psdtof = NPI_tof_theta_monitor( 
    nt = 800, na = 600, filename = "tof_theta.dat",
    radius = 2, yheight = 1, tmin = tof-40e3, tmax = tof+40e3, 
    amin = det_th1, amax = det_th2, restore_neutron = 1,verbose=0)       
  AT (0, 0, 0) RELATIVE Sample_axis 
  
 /* ToF vs. 2theta map, detail */ 
  COMPONENT psdtofDetail= NPI_tof_theta_monitor(
    nt = 400, na = 400, filename = "tof_theta_detail.dat", 
    radius = 2, yheight = 1, tmin = 100e3, tmax = 110e3, 
    amin = 75, amax = 80, restore_neutron = 1,verbose=0)       
  AT (0, 0, 0) RELATIVE Sample_axis     
 

END