File: ILL_BRISP.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (396 lines) | stat: -rw-r--r-- 15,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*******************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: ILL_BRISP
*
* %Identification
* Written by: E. Farhi and N. Formissano [formisan@ill.fr]
* Date: June 4th, 2009
* Origin: ILL
* %INSTRUMENT_SITE: ILL
*
* Time of Flight Neutron Spectrometer for Small Angle Inelastic Scattering BRISP
*
* %Description
* BRISP is a new concept thermal neutron Brillouin scattering spectrometer which
* exploits the time-of-flight technique and is optimized to operate at small
* scattering angles with good energy resolution.
*
* Keywords in the design of the BRISP spectrometer were :
*
* Thermal neutron energies: allowing for investigations in systems characterized
*   by sound velocities up to 3000 m/s (three different incident energies between
*   20 and 80 meV are presently available).
* Easy small-angle access: enabling low-Q spectroscopy with thermal neutrons.
*   Elastic wavevector transfer values Qel as low as 0.03 Å -1 at 20 meV incident
*   energy can be reached. The position of the two-dimensional detector can be
*   adjusted to cover different small-angle ranges between 1° and 15°.
* Time-of-Flight technique: for an efficient data collection allowing also for
*   accurate neutron measurements as a function of external parameters such as
*   temperature, pressure and magnetic field.
* Carefull optimization of monochromator-collimators-Fermi chopper:  leading to
*   0.5 meV energy resolution and 0.02 Å-1 Q resolution in a typical
*   configuration (20 meV incident energy and 4 m sample-detector distance),
*   along with acceptable counting rates (flux at the sample 104 n s-1 cm-2).
*   For this purpose, innovatory solutions were specially developed for some of
*   the BRISP components.
*
* Main components:
*
* a Soller collimator defining the beam impinging on the monochromator, with a
*   collimation angle of 0.4°
* two focusing multi-crystal monochromators, PG and Cu(111), that allow for the
*   selection of three incident energies in the range from 20 to 80 meV.
*   Fixed/variable curvatures are adopted in/outside the Brisp vertical scattering plane.
* a disk chopper used for background reduction and selection of the desired
*   monochromator reflection through proper phasing with the Fermi chopper.
* three honeycomb converging collimators [1] to define the incident beam on the
*   sample with a collimation angle of 0.4°, and to optimize convergence at three
*   detector positions (2, 4, 6 m from the sample). A coarse resolution option
*   is also available, without honeycomb collimator.
* a Fermi chopper producing short neutron pulses which enable the time-of-flight
*   analysis.
* a high-vacuum sample chamber possibly equipped with 1.5-300 K MAXI Orange
*   cryostat (100 mm) and 300-1900 K furnace
* a ~2 m2-area position sensitive gas detector (3He) whose distance from the
*   sample can be varied between 2 and 6 m in order to access the required Q-range.
*   A huge vacuum tank hosts the detector. An elastobore – polyethylene shielding
*   surrounds the vacuum tank to reduce the environmental background.
* the long vacuum line ensures an under-vacuum neutron flight path from the
*   background chopper to the detector.
*
* Configurations:
* crystal d-spacing (Å)   lambda0 (Å)    E0(meV)
* PG(002) 3.355(nominal)  1.977(expt.)   20.9 (expt.)
* Cu(111) 2.087           1.28  (expt.)  49.9 (expt.)
* PG(004) 1.677(nominal)  0.989(expt.)   83.6 (expt.)
*
* In this model, the sample is a plate of thickness e=4 mm, surrounded by an
* Al or Nb container, inside an Al shield (phi=10 cm).
*
* %Example: coh="V.lau" Detector: Detector_I=31.55
*
* %Parameters
* DM: [Angs]        Monochromator d-spacing. Use 3.355 for PG002, 1.677 for PG004 and 2.087 for Cu111.
* coh: [str]        Sample coherent specification (use laz, lau or Sqw file, or NULL to disable). Sample is a 5x5 cm plate, e=4 mm.
* inc: [str]        Sample incoherent specification (use laz, lau or Sqw file, or NULL to scatter isotropically, using cross sections read from the coherent file)
* container: [str]  sample container material. Thickness is .2 mm. Use NULL, Al or Nb.
* LSD: [m]          Distance sample-detector
* Frequency: [Hz]   Disk-chopper frequency
* LCC:       [m]    Distance between the Disk-chopper and the Fermi-chopper
* DELAY:     [s]    Fermi phase wrt. Disk-chopper opening
*
* %Link
* The BRISP spectrometer at the ILL <a href="www.ill.fr/brisp">BRISP</a>
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_BRISP(DM=3.355, string coh="V.lau", string inc="NULL", string container="NULL", LSD=4.5, Frequency=0, LCC=0, DELAY=0)

/* The DECLARE section allows us to declare variables or  small      */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
  double LCE      = 1.0;       /* distance fermi chopper <--> sample   */
  double LME;                  /* distance monochromator <--> sample   */

  double lambda   =0;
  double A1       =17.5;
  double RATIO    =4;

  double Ei;
  #pragma acc declare create(Ei)
  double lsd;
  double RH, RV;
  
%}

USERVARS %{
  double flag_container;
  double flag_sample;
  double flag_env;
  double vix;
  double viy;
  double viz;
  double Ef;
  double Q;
  double dE;
%}

/* The INITIALIZE section is executed when the simulation starts     */
/* (C code). You may use them as component parameter values.         */
INITIALIZE
%{
  double Ki, vi;
  double RPM    =14960;	       /* Fermi chopper rotation speed, Disk=RPM/RATIO [rpm] */

  LME = 5.540+LCE;
  LCC = LME-LCE-1.5;
  lsd=LSD;

  lambda= sin(A1*DEG2RAD)*2*DM;

  Ki = 2*PI/lambda;
  vi = K2V*fabs(Ki);
  Ei = VS2E*vi*vi;
  #pragma acc update device(Ei)

  DELAY   = LCC/vi;           /* neutron propagation time between choppers [s] */

  printf("Instrument ILL_BRISP:\n\tTime of Flight Neutron Spectrometer for Small Angle Inelastic Scattering\n");
  printf("Monochr. Bragg angle     [deg] %g\n",  A1);
  printf("Wavelength               [AA]  %g\n",  lambda);
  printf("Neutron velocity         [m/s] %g\n",  vi);
  printf("Incident Energy          [meV] %g\n",  Ei);

  printf("Travel time: Disk./Fermi [us]  %g\n",  DELAY*1e6);
  printf("CHOP Disk  Speed         [rpm] %g\n",  RPM/RATIO);
  printf("CHOP Fermi Speed         [rpm] %g        (%g [Hz], %g [rad/s])\n",
                                                 RPM, RPM/60, RPM/60*2*PI);
  printf("CHOP Disk  Phase         [deg] %g\n",  DELAY*RPM/60*360);
  printf("CHOP Fermi Phase         [deg] %g\n",  0.0);

  printf("Dist. Monochromator-Fermi [m]  %g\n",  LME-LCE);
  printf("Dist. Disk-Fermi          [m]  %g\n",  LCC);
  printf("Dist. Sample-Detector     [m]  %g\n",  LSD);

  Frequency=RPM/60; /* [rpm/60=rps=Hz]  */

  double L=LME;

  RV = 2*L*sin(DEG2RAD*A1);
  RH = 2*L/sin(DEG2RAD*A1);
%}

TRACE

COMPONENT Origin = Progress_bar()
  AT (0,0,0) ABSOLUTE ROTATED (-2*A1,0,0) ABSOLUTE

/* thermal tube IH3 17.5 deg inclinaison */
COMPONENT ThermalSource = Source_gen(
    radius = 0.1, focus_xw = 0.06, focus_yh = 0.06, dist=6,
    lambda0 = lambda, dlambda = lambda*0.01,
    T1=683.7,I1=0.5874e+13,T2=257.7,I2=2.5099e+13,T3=16.7 ,I3=1.0343e+12)
  AT (0, 0, 0) RELATIVE Origin

/* Soller Collimator                alpha1 = 0.4°
   700 mm length - 5 mm slit spacing
   16 Gd2O3 coated Kapton sheets, 75 µm thick
 */
COMPONENT C1 = Collimator_linear(xwidth=0.06, yheight=0.06,
          length=0.7, divergence=30,transmission=1.0)
AT (0,0,6) RELATIVE ThermalSource

COMPONENT MonoCradle1 = Arm()
AT (0,0,0.7+0.4) RELATIVE PREVIOUS

COMPONENT MonoCradle2 = Arm()
AT (0,0,0) RELATIVE PREVIOUS ROTATED (0,0,90) RELATIVE PREVIOUS

/* put back beam in horizontal pane */
/* Double focusing – horizontal variable focusing.
   Incident beam area at the monochromator: 6 x 6 cm2.
   Monochromator surface: 20.8 x 8.6 cm2
   20 crystals in a 4 x 5 matrix: crystal size 4 x 2 cm2, mosaic spread 0.4° (PG) and 0.25° (Cu)
 */

SPLIT COMPONENT Monok = Monochromator_curved(width=0.208, height=0.086, gap=0.0005,
          NH=4, NV=5, mosaich=30.0, mosaicv=30.0, r0=0.8, DM=DM)
AT (0,0,0) RELATIVE MonoCradle2 ROTATED (0,-A1,0) RELATIVE MonoCradle2

COMPONENT MonokOut = Arm()
AT (0,0,0) RELATIVE MonoCradle2 ROTATED (0,-2*A1,90) RELATIVE MonoCradle2

COMPONENT LmonokOUT = Monitor_nD(
    options = "lambda limits=[1.7 2.1] bins=40", xwidth=0.06, yheight=0.06)
  AT (0, 0, 1.7) RELATIVE MonokOut

COMPONENT Monitor1 = Monitor_nD(
    options = "x y, slit", xwidth=0.06, yheight=0.06)
  AT (0, 0, 0.01) RELATIVE PREVIOUS

/* Disk chopper: 8 slits width 6 cm on radius 0.21=8*16 deg=128 deg. Transmission 128/360=35 % */
COMPONENT DC=DiskChopper(radius=.240, theta_0=15, nslit=8,
  nu=Frequency/RATIO,yheight=0.06,isfirst=1)
  AT (0, 0, 1.73) RELATIVE MonokOut ROTATED (0,0,90) RELATIVE MonokOut
/* flux outgoing from Disk is in [n/s] (integrated in time) */

COMPONENT DC_OUT_T = Monitor_nD(
    options = "time limits=[5.5e-4 8.5e-4] bins=100", xwidth=0.06, yheight=0.06)
AT (0,0,0.2) RELATIVE PREVIOUS ROTATED (0,0,0) RELATIVE MonokOut

/* Honeycomb Collimator       alpha2 = 0.4°
- 2000 mm length, Gd2O3-coated aluminum
- honeycomb arrangement of converging tubes of hexagonal section
- 3 different collimators for convergence at 2, 4(recommended), 6 m from the sample position
- collimators are maintained under vacuum and selected by means of a 4-sector revolver
- one sector is used for coarse collimation using 2 Cd diaphragms (in: 81x81mm2, out: 67x67mm2)
 */
COMPONENT HC = Guide_honeycomb(
    w1 = .085, w2 = .066, l = 2, R0 = 0, nslit = 6)
  AT (0, 0, 0.9) RELATIVE DC

COMPONENT HC_OUT_PSD = Monitor_nD(
    options = "x y, all bins=50", xwidth=0.07, yheight=0.07)
  AT (0, 0, 2+0.1) RELATIVE PREVIOUS

/* this monitor has an integrated flux in [n/s] */
/* shows only one pulse from Disk chopper, but standing for all slits in a period
 * In reality, per pulse we must divide by nu=250.0/4
 */
COMPONENT FC_IN_T = Arm()
  AT (0, 0, LME-LCE-0.2) RELATIVE MonokOut
EXTEND %{
  /* we must make so that integrated flux is in [n/s] */
  PROP_Z0;
  /* we fisrt put all events in the Fermi time transmission window */
  /* Fermi opening time is atan(w/length)/PI/frequency */
  double Tfermi=atan2(0.031/136,0.013)/INSTRUMENT_GETPAR(Frequency)/PI; /* opening time for Fermi [s] */
  t  = INSTRUMENT_GETPAR(DELAY)*(INSTRUMENT_GETPAR(LCC)-0.2)/INSTRUMENT_GETPAR(LCC)+(rand01()-0.5)*Tfermi;    /* center time on DELAY at Fermi position */

  /* geometric integrated transmission of Fermi=0.55 % */
  /* 2 sides*angular opening = 2*atan2(0.031/136,0.013)*RAD2DEG/360 */
  p *= 2*atan2(0.031/136,0.013)*RAD2DEG/360;

%}

/* Dist: Monochromator – Fermi chopper 5540 mm */
COMPONENT FC=FermiChopper(xwidth=.031, yheight=.101, nslit=136, nu=Frequency,
  phase=0, radius=.135/2,length=0.013,delay=DELAY)
  AT (0, 0, LME-LCE) RELATIVE MonokOut ROTATED (0,0,90) RELATIVE MonokOut
/* Dist: Fermi chopper – Sample 1000 mm */

COMPONENT FC_OUT_T = Monitor_nD(
    options = "time limits=[2.15e-3 2.175e-3] bins=20", xwidth=0.06, yheight=0.06)
  AT (0, 0, 0.2) RELATIVE PREVIOUS ROTATED (0,0,0) RELATIVE MonokOut


/* Sample position ********************************************************** */
/* external shield Al, container and sample in concentric geometry            */
COMPONENT SampleXY=Monitor_nD(
  xwidth=.03, yheight=.03,
  options="x y, per cm2", restore_neutron=1)
  AT (0, 0, LME) RELATIVE MonokOut

SPLIT COMPONENT SamplePos=Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
EXTEND %{
  flag_container=flag_sample=flag_env=0;
  vix=vx; viy=vy; viz=vz;
%}

COMPONENT Environment_in=Isotropic_Sqw(
  radius = 0.05, yheight = 0.1, thickness=0.002,
  Sqw_coh="Al.lau", concentric=1, d_phi=15, order=1,
  p_interact=0.05)
  AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
  flag_env=SCATTERED;
%}

COMPONENT Container_in=Isotropic_Sqw(xwidth=0.05+2e-4, yheight=0.05+2e-4, zdepth=4e-3+2e-4,
  thickness=2e-4, Sqw_coh=container, concentric=1, d_phi=15, order=1,
  p_interact=0.05)
  AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
  flag_container=SCATTERED;
%}

COMPONENT Sample=Isotropic_Sqw(xwidth=0.05, yheight=0.05, zdepth=4e-3,
  Sqw_coh=coh, Sqw_inc=inc, p_interact=0.99, order=1, d_phi=30)
  AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
  if (SCATTERED)
    flag_sample=SCATTERED*(VarSqw.type == 'c' ? 1 : -1);
%}

COMPONENT Container_out=COPY(Container_in)(concentric=0)
  AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
  if (SCATTERED) flag_container=1;
%}

COMPONENT Environment_out=COPY(Environment_in)(concentric=0)
  AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
  if (SCATTERED) flag_env=1;
%}

/* End Sample position ****************************************************** */

/* Detector model *********************************************************** */
/* Dist: Sample – Detector 4500 mm */
COMPONENT DetectorPos=Arm()
AT (0, 0, LSD) RELATIVE SamplePos
EXTEND %{
  PROP_Z0;
  /* masks: 4 absorbing panels on corners: width=.203 height=(1118-600)/2=.259 */
  if (fabs(x) > (160*12.7/1000)/2-0.203 && fabs(y)>(1.118/2-.259) ) ABSORB;
  if (x*x+y*y < 0.05*0.05) ABSORB; /* central beamstop: radius 0.05 */

  Ef = VS2E*(vx*vx+vy*vy+vz*vz);
%}

/* Global monitor */
COMPONENT Detector_pre = Arm()
AT(0,0,0) RELATIVE PREVIOUS
EXTEND
%{
  Q=V2K*sqrt( (vx-vix)*(vx-vix)+(vy-viy)*(vy-viy)+(vz-viz)*(vz-viz) );
  dE=Ef-Ei;
%}

COMPONENT Detector=Monitor_nD(  /* SANS XY detector */
  options="x y", xwidth=160*12.7/1000, yheight=1.118, bins=50, restore_neutron=1)
  WHEN (flag_sample || flag_container || flag_env)
  AT (0, 0, 0.01) RELATIVE PREVIOUS

COMPONENT Detector_Q=Monitor_nD( /* I(q) detector */
  options="user1 limits=[0 1.5]", user1="Q",username1="Q transfer [Angs-1]", xwidth=160*12.7/1000, yheight=1.118, bins=50, restore_neutron=1)
  WHEN (flag_sample || flag_container || flag_env )
  AT (0, 0, 0.01) RELATIVE PREVIOUS

COMPONENT Detector_E=Monitor_nD( /* Energy distribution */
  options="user1", xwidth=160*12.7/1000, yheight=1.118, restore_neutron=1, bins=100,
  min=-Ei, max=2*Ei,
  user1="dE", username1="Energy transfer [meV]")
  WHEN (flag_sample || flag_container || flag_env)
  AT (0, 0, 0.01) RELATIVE PREVIOUS

COMPONENT Detector_QE=Monitor_nD(
  options="user1 limits=[0 1.5], user2 limits=[-10 10]", xwidth=160*12.7/1000, yheight=1.118,
  restore_neutron=1, bins=50,
  user1="Q", username1="Q transfer [Angs-1]",
  user2="dE", username2="Energy transfer [meV]")
WHEN (flag_sample || flag_container || flag_env)
AT (0, 0, 0.01) RELATIVE PREVIOUS

COMPONENT EndOfInstrument=Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
EXTEND %{
  /* make sure this is the end of the simulation (do not propagate to following volumes)*/
  ABSORB;
%}

/* Additional cosmetic shapes =============================================== */
/* reactor vessel: radius 1.25 m  . Core 0.220*/
/* Beam tube IH3 Phi=.108 at dx=-.454 dz=.279 from reactor core , inclined 17.5 deg */
/* put large detector housing phi=2.8 m to be pretty l=2-6 m from sample */

COMPONENT DetectorTube = Shape(radius=1.4, yheight=8.0)
AT (0,0,0) RELATIVE Detector ROTATED (90,0,0) RELATIVE Detector

COMPONENT ToMonok = Arm() /* to avoid misleading lines */
AT (0,0,0) RELATIVE MonoCradle1

COMPONENT ToOrigin = Arm() /* to avoid misleading lines */
AT (0,0,0) ABSOLUTE

COMPONENT Core = Shape(radius=.202, yheight=1.0)
AT (.454, 0, -.279) ABSOLUTE

COMPONENT Vessel = Shape(radius=1.25, yheight=2.0)
AT (0,0,0) RELATIVE PREVIOUS

END