1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*******************************************************************************
* McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: ILL_H22_D1A monochromator Diffractometer
*
* %Identification
* Written by: E. Farhi
* Date: 13 Apr 2006
* Origin: ILL
* %INSTRUMENT_SITE: ILL
*
* Simple monochromator Diffractometer for powders (D1A) installed on H22, with
* container/sample environment and radial collimator.
*
* %Description
* D1A is a reliable diffractometer for standard crystallographic problems. It gives
* excellent results with the Rietveld method owing to its near perfect Gaussian
* peak-shape in the 2θ-range 30° to 150°.
*
* Special features include
* a high fixed take-off angle of 122 deg, giving high resolution at large
* scattering angles (up to 160 deg);
* a bank of 25 high efficiency collimators and counters;
* an anisotropically squashed germanium monochromator focussing a 250
* mm high beam onto only 30 mm;
* a wide choice of wavelengths, from 1.39 Angs to 2.99 Angs, quickly available by
* simple rotation of the focussing monochromator;
*
* The large monochromator take-off angle means that the diffraction pattern is
* focussed for the parallel geometry shown (2θ = 122°). The counter can be swept
* through 0 deg to 2θ = 160° deg for the highest angle counter, usually in steps
* of 0.05 deg.
* Monochromator Neutron wavelength
* Ge 117 DM=0.7946 AA 1.390
* Ge 335 DM=0.8655 AA 1.514
* Ge 115 DM=1.0925 AA 1.911 (optimal)
* Ge 113 DM=1.712 AA 2.994
*
* The sample is a powder, in a container can, all positioned in an
* Al environment (e.g. cryostat/furnace shield).
*
* This instrument was installed on the H22 guide.
*
* %Example: lambda=1.911 Detector: BananaPSD_I=3.8578E+05
*
* %Parameters
* lambda: [Angs] Wavelength at monochromator
* DM: [Angs] d-spacing of monochromator. Use DM=0 to compute the values from the requested wavelength.
* powder: [str] File name for powder sample description
* container: [str] File name for container decription in Al cryostat/furnace
* dlambda: [Angs] Wavelength-spread around lambda at source
* RV: [m] Radius of vertical focussing. flat for 0
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_H22_D1A(lambda=1.911, dlambda=0.03, DM=0, RV=-1, string powder="Na2Ca3Al2F14.laz", string container="V.laz")
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double A1; /* rotation of monok and d-spacing */
double RV; /* vertical curvature of monochromator */
double verbose=1;
double L1=0.5, L2=1.25, L3=0.5;
%}
USERVARS
%{
double flag_container;
double flag_sample;
double flag_env;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
double L;
double KI, Vi, EI;
A1 =122/2;
if (!lambda && DM)
lambda=sin(A1*DEG2RAD)*2*DM;
else if (lambda && !DM)
DM=lambda/2/sin(A1*DEG2RAD);
if (!lambda || !DM)
exit(printf("%s: ERROR: wavelength and DM are unset. Exit.\n", NAME_INSTRUMENT));
L = L2; /* assume guide exit L1=Inf */
if (RV < 0) RV=2*L*sin(DEG2RAD*A1);
KI=2*PI/lambda;
Vi = K2V*fabs(KI);
EI = VS2E*Vi*Vi;
A1 *= -1;
if (verbose) {
printf("%s: Detailed DIF configuration\n", NAME_INSTRUMENT);
printf("* Incoming beam: lambda=%.4g [Angs] EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s]\n",
lambda, EI, KI, Vi);
printf("* Monochromator: DM=%.4g [Angs] RV=%.4g [m] %s, take-off A2=%.4g [deg]\n",
DM, RV, (!RV ? "flat" : "curved"), 2*A1);
printf("* Sample: %s in %s cylinder container\n", powder, container);
}
RV = -fabs(RV);
%}
TRACE
%include "ILL/ILL_H22/ILL_H22.instr"
/* additional horizontal divergence monitor at end of guide */
/* also defines a static position to orient remaining instrument */
COMPONENT D1A_Mono_Dx = Monitor_nD(
xwidth=0.03, yheight=0.2, restore_neutron=1,
options="dx, all auto, per cm2, slit", restore_neutron=1)
AT (0, 0, L1) RELATIVE PREVIOUS
/* TIP: monochromator cradle */
COMPONENT mono_cradle = Arm()
AT (0, 0, 0) RELATIVE PREVIOUS
ROTATED (0, A1, 0) RELATIVE PREVIOUS
/* TIP: could use curved monochromator with NH>1 NV>1 et RH>0 RV>0 */
SPLIT COMPONENT Monok = Monochromator_curved(
width = 0.1, height = 0.1, NH = 1, NV = 11, RV=RV,
mosaich = 30, mosaicv = 30, DM = DM)
AT (0, 0, 0) RELATIVE mono_cradle
/* TIP: positioning diffraction direction for monok (order 1) */
COMPONENT mono_out = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, 2*A1, 0) RELATIVE Origin
COMPONENT Lmon = Monitor_nD(
bins = 50,options="auto lambda", xwidth = 0.05, yheight = 0.05)
AT (0, 0, 0.2) RELATIVE mono_out
COMPONENT PSDsample = Monitor_nD(
bins = 20, options="x y", xwidth = 0.1, yheight = 0.1)
AT (0, 0, L2-0.1) RELATIVE mono_out
/* sample position ********************************************************** */
SPLIT COMPONENT SamplePos=Arm()
AT (0, 0, L2) RELATIVE mono_out
EXTEND %{
flag_container=flag_sample=flag_env=0;
%}
COMPONENT Environment_in=PowderN(
radius = 0.05, yheight = 0.1, thickness=0.002,
reflections="Al.laz", concentric=1, d_phi=RAD2DEG*atan2(0.5,L3),
p_transmit=0.95, p_inc=0, barns=1)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
flag_env=SCATTERED;
%}
COMPONENT Container_in=PowderN(radius=0.008/2+1e-4, thickness=1e-4, yheight=0.05,
reflections=container, concentric=1, d_phi=RAD2DEG*atan2(0.5,L3) ,
p_transmit=0.93, p_inc=0.05)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
flag_container=SCATTERED;
%}
COMPONENT Sample=PowderN(reflections = powder,
radius = 0.008/2, yheight = 0.03,
d_phi=RAD2DEG*atan2(0.5,L3), p_transmit=0.08, p_inc=0.05)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
if (SCATTERED)
flag_sample=SCATTERED;
%}
COMPONENT Container_out=COPY(Container_in)(concentric=0)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
if (SCATTERED) flag_container=1;
%}
COMPONENT Environment_out=COPY(Environment_in)(concentric=0)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
if (SCATTERED) flag_env=1;
%}
/* sample position (end) **************************************************** */
COMPONENT Collimator=Collimator_radial(xwidth=0, yheight=.25, length=.2,
divergence=40,transmission=1, nchan=27,
theta_min=0, theta_max=160, radius=0.25)
AT (0, 0, 0) RELATIVE SamplePos
EXTEND %{
if (!flag_sample && !flag_container) ABSORB;
%}
/* perfect detector: 1D(theta) */
COMPONENT BananaTheta = Monitor_nD(
options = "banana, theta limits=[3 160], bins=380",
xwidth = L3*2, yheight = 0.15)
AT (0, 0, 0) RELATIVE SamplePos
/* perfect detector: 2D(theta,y) to see diffraction rings */
COMPONENT BananaPSD = Monitor_nD(
options = "banana, theta limits=[5 160] bins=380, y bins=25",
xwidth = L3*2*1.005, yheight = 0.5)
AT (0, 0, 0) RELATIVE SamplePos
END
|