1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*******************************************************************************
* McStas instrument definition URL=http://mcstas.risoe.dk
*
* Instrument: ILL_H53
*
* %Identification
* Written by: FARHI Emmanuel (farhi@ill.fr)
* Date: Oct 7, 2008
* Origin:ILL
* %INSTRUMENT_SITE: ILL
*
* The D16 diffractometer/reflectometer on the H53 curved cold guide at the ILL
*
* %Description
* The H53 (120 x 60 mm2) curved cold guide feeds D16 (after IN14, and IN16).
* D16 is a two-circle diffractometer. The primary white beam is reflected by a
* focussing pyrolytic graphite monochromator (122 x 60 mm2 with mosaicity 0.7
* deg) providing an important flux at the sample. The monochromator housing has
* two beam holes at take-off angles of 90 deg and 115 deg, corresponding to 4.7
* Angs and 5.6 Angs beams and incorporates the slit systems.
*
* Example: m=1.2 Detector: Det_psd_I=6.4729E+03
*
* %Parameters
* lambda: [Angs] Wavelength at monochromator, computed from DM and THETA_M if left as 0.
* DM: [Angs] d-spacing of monochromator, computed from lambda and THETA_M if left as 0.
* THETA_M: [deg] Monochromator take-off angle, computed from lambda and DM if left as 0.
* TILT: [deg] Monochromator additional tilt, for rocking curves
* dlambda: [AA] wavelength half width.
* RV: [m] Monochromator vertical curvature, 0 for flat, -1 for automatic setting
* L1: [m] Guide-Monochromator distance
* L2: [m] Monochromator-Sample distance
* L3: [m] Sample-Detector distance
* Powder: [str] File name for powder description.
* If set to NULL, use a 100 Angs particule colloid
* verbose: [1] Print DIF configuration. 0 to be quiet
* TwoTheta: [deg] Detector rotation (in plane)
* RadiusDet: [m] Detector entrance window radius
* DetEthick: [m] Detector entrance window thickness
* DetEgap: [m] Detector entrance window gap to flat detector inner window
* DetVthick: [m] Detector active volume thickness
*
* %Link
* The <a href="http://www.ill.fr/d16">D16 diffractometer</a> at the ILL
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_H53_D16(lambda=4.7, DM=3.355, dlambda=0.05, string Powder="Na2Ca3Al2F14.laz", RV=-1, L1=0.1, L2=2.8, L3=1.0, THETA_M=44.46, TwoTheta=0, RadiusDet=0.36, DetEthick=.01, DetEgap=0.08, DetVthick=5e-3, verbose=1, TILT=0)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double KI, Vi, EI;
%}
USERVARS
%{
/* D16 parameters */
char flag_al;
char flag_sample;
/* capture flux positions from moderator: 21.4 28.4 61.2 */
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
if (!THETA_M && lambda && DM)
THETA_M =asin(lambda/(2*DM))*RAD2DEG;
else if (THETA_M && !lambda && DM)
lambda = fabs(sin(THETA_M*DEG2RAD))*2*DM;
else if (THETA_M && lambda)
DM = fabs(lambda/sin(DEG2RAD*THETA_M)/2.0);
/* test input parameters */
if (!THETA_M || !DM || !lambda) exit(fprintf(stderr,
"%s: ERROR: Monochromator take-off, d-spacing or wavelength is null (THETA_M=%g, DM=%g, lambda=%g). Abort.\n",
NAME_INSTRUMENT, THETA_M, DM, lambda));
if (RV < 0) RV=2*L2*sin(DEG2RAD*THETA_M);
KI=2*PI/lambda;
Vi = K2V*fabs(KI);
EI = VS2E*Vi*Vi;
if (verbose) {
printf("%s: Detailed D16 configuration on H53@ILL\n", NAME_INSTRUMENT);
printf("* Incoming beam: lambda=%.4g +/- %g [Angs] EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s]\n",
lambda, dlambda, EI, KI, Vi);
printf("* Monochromator: DM=%.4g [Angs] RV=%.4g [m] %s, take-off THETA_M=%.4g [deg]\n",
DM, RV, (!RV ? "flat" : "curved"), THETA_M*2);
printf("* MILAND Detector: entrance window radius=%g [m] thickness=%g [m] gap=%g [m]\n",
RadiusDet, DetEthick, DetEgap);
}
%}
/* Here comes the TRACE section, where the actual */
/* instrument is defined as a sequence of components. */
TRACE
%include "ILL/ILL_H53/ILL_H53.instr"
/* position of D16 */
/* The beam at the monochromator position is asymetric due to the curved section. */
/* TIP: monochromator cradle */
COMPONENT mono_cradle = Arm()
AT (0,0,L1) RELATIVE PREVIOUS
EXTEND %{
flag_al=0;
flag_sample=0;
%}
COMPONENT Mono_XY = Monitor_nD(
options="x y, all auto",
xwidth=0.06, yheight=.12, restore_neutron=1)
AT (0, 0, 0) RELATIVE PREVIOUS
/* TIP: could use curved monochromator with NH>1 NV>1 et RH>0 RV>0 */
SPLIT COMPONENT mono = Monochromator_curved(
width = 0.08, height = 0.122, NH = 1, NV = 7, RV=RV,
mosaich = 40, mosaicv = 40, DM = DM)
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, THETA_M+TILT, 0) RELATIVE PREVIOUS
/* TIP: positioning diffraction direction for monok (order 1) */
COMPONENT mono_out = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, 2*THETA_M, 0) RELATIVE mono_cradle
COMPONENT Sample_pos = Arm()
AT (0, 0, L2) RELATIVE mono_out
COMPONENT slit1 = Slit(radius=5e-3)
AT (0, 0, -0.1) RELATIVE Sample_pos
COMPONENT D16_flux = Monitor_nD(
xwidth=0.02, yheight=0.03,
options="auto lambda, all bins=20, per cm2", restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
SPLIT COMPONENT D16_xy = Monitor_nD(
xwidth=0.02, yheight=0.03,
options="x y, all bins=20, per cm2", restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
EXTEND %{
flag_sample=0;
%}
COMPONENT SampleP = PowderN(
reflections = Powder, radius = 0.005, yheight = 0.03, d_phi=RAD2DEG*atan2(0.32,L3))
WHEN (Powder && strlen(Powder) && strcmp(Powder,"NULL"))
AT (0, 0, 0) RELATIVE Sample_pos
EXTEND %{
if (SCATTERED) flag_sample=1;
%}
COMPONENT SampleC = Sans_spheres(
R = 100, Phi = 1e-3, Delta_rho = 0.6, sigma_abs = 50,
radius = 0.005, yheight = 0.03,
target_index=+2, focus_xw=0.32, focus_yh=0.32)
WHEN (!Powder || !strlen(Powder) || !strcmp(Powder,"NULL"))
AT (0, 0, 0) RELATIVE Sample_pos
EXTEND %{
if (SCATTERED) flag_sample=1;
%}
COMPONENT D16_BananaTheta = Monitor_nD(
options = "banana, theta limits=[-10 120], bins=340",
radius = L3, yheight = 0.32, restore_neutron=1)
WHEN (flag_sample)
AT (0, 0, 0) RELATIVE Sample_pos
COMPONENT Det_dir = Arm()
AT(0,0,0) RELATIVE Sample_pos
ROTATED (0, TwoTheta, 0) RELATIVE Sample_pos
COMPONENT slit2 = Slit(radius=5e-3)
AT (0, 0, 0.1) RELATIVE Det_dir
COMPONENT Det_pos = Arm()
AT(0,0,L3) RELATIVE Det_dir
EXTEND %{
flag_al=0;
%}
COMPONENT Det_input = PowderN(
reflections="Al.lau", radius=RadiusDet, thickness=DetEthick, concentric=1, p_transmit=0.8, p_inc=0.05)
AT(0,0,RadiusDet) RELATIVE Det_pos
EXTEND %{
if (SCATTERED) flag_al=1;
%}
COMPONENT Det_input_flat = PowderN(
reflections="Al.lau", xwidth=0.5, yheight=0.5, zdepth=5e-3, p_transmit=0.8, p_inc=0.05)
AT(0,0,DetEgap) RELATIVE Det_pos
EXTEND %{
if (SCATTERED) flag_al=1;
%}
COMPONENT Det_psd_flat = Monitor_nD(
xwidth=0.32, yheight=0.32, options="x y", bins=50)
AT(0,0,0.005) RELATIVE PREVIOUS
COMPONENT Det_psd_flat_q = Monitor_nD(
xwidth=0.5, yheight=0.5, options="auto radius", bins=50)
WHEN (flag_sample)
AT(0,0,0.001) RELATIVE PREVIOUS
COMPONENT Det_psd_flat_al = Monitor_nD(
xwidth=0.32, yheight=0.32, options="x y", bins=50)
WHEN (flag_al)
AT(0,0,0.001) RELATIVE PREVIOUS
COMPONENT Det_psd = PSD_Detector(
xwidth=0.32, yheight=0.32, nx=320, ny=320,
zdepth=DetVthick,
PressureConv=13, PressureStop=1.5,
FN_Conv="Gas_tables/He3inHe.table", FN_Stop="Gas_tables/He3inCF4.table",
filename="D16.psd")
WHEN (flag_sample || flag_al)
AT(0,0,0.015) RELATIVE PREVIOUS
END
|