1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Instrument: ILL_IN4
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: March 5th 2015.
* Origin: <a href="http://www.ill.fr">ILL (France)</a>
* %INSTRUMENT_SITE: ILL
*
* The IN4 thermal Time-of-Flight spectrometer at the ILL (H12 tube).
*
* %Description
* IN4C is a high-flux time-of-flight spectrometer used for the study of excitations
* in condensed matter. It works in the thermal neutron energy range (10-100 meV).
*
* Primary spectrometer
*
* The main components of the beam conditioning part are the two background
* choppers, the double curvature mono-chromator with four faces and the Fermi
* chopper. The background choppers are rapidly pulsating beam shutters which act
* as a low-pass filter. Thus they eliminate from the beam most of the fast
* neutrons and gamma rays that would give background noise in the spectra. The
* modular shielding encloses the background choppers in separate compartments in
* order to cut off these undesired neutrons as early as possible. A suitable
* energy is selected from the thermal neutron spectrum with the crystal
* monochromator. The monochromator, an assembly of 55 crystal pieces,
* concentrates the divergent incident beam onto a small area at the sample
* position. The full use of the available solid angle gives a high incident
* flux. The vertical curvature is fixed, and the horizontal
* variable curvature of the monochromator is essential in controlling
* the time and space focussing conditions for optimal performance (see H. Mutka,
* Nucl. Instr. and Meth. A 338 (1994) 144). The Fermi chopper rotates at speeds
* of up to 40000 rpm. It transmits short neutron pulses (10 ... 50 µs) to the
* sample. The time-of-flight of neutrons between the chopper and the sample (1
* ... 5 ms) can be measured by using precise electronic circuitry.
* A sapphire (Al2O3) filter can be inserted in the beam to remove the fast neutrons
* background.
*
* Monochromators:
* PG 002 DM=3.355 AA (Highly Oriented Pyrolythic Graphite)
* PG 004 DM=1.677 AA (used for lambda=1.1)
* PG 006 DM=1.118 AA
* Cu 220 DM=1.278 AA
* Cu 111 DM=2.095 AA
* Take-off: 39-65 deg
* flux at sample: 5e5 n/s/cm2 (at 1.1 Angs)
*
* Secondary spectrometer
*
* The sample environment is designed to accommodate standard
* cryostats and furnaces. A radial collimator around the sample position is used
* to cut the scattering from the sample environment. The secondary flight-path
* is in vacuum to avoid parasitic scattering of the transmitted neutrons. The
* detector bank covers scattering angles of up to 120°. In addition to the 3He
* detector tubes (length 300 mm, width 30 mm, elliptical section, pressure 6
* bar) a 3He filled multidetector (eight sectors with 12 radial cells each;
* outer diameter Phi 60 cm) will allow us to observe forward scattering. The
* time-of-flight spectra measured at various angles are further treated in order
* to obtain the scattering function S(Q,w) using e.g. LAMP.
*
* In this model, the sample is a cylindrical liquid/powder/glass scatterer
* surrounded by a container and an Al cryostat.
*
* %Example: lambda=1.2 DM=1.677 Detector: sample_flux_I=4.43306e+06
*
* %Parameters
* lambda: [Angs] wavelength
* dlambda: [Angs] wavelength HALF spread at source
* DM: [Angs] monochromator d-spacing
* ETAM: [arcmin] monochromator mosaic FWHM
* RMH: [m] Monochromator horizontal curvature. Use -1 for auto.
* ratio: [1] Disk Chopper ratio (nu=nu_FC/ratio)
* dE: [meV] Inelastic energy for time focusing
* Sapphire_present: [1] Flag, when 1 the Al2O3 filter is active
* sample_coh: [str] Sample coherent dynamic structure factor (.sqw) or NULL
* sample_inc: [str] Sample incoherent dynamic structure factor (.sqw) or NULL
* order: [1] The number of multiple orders at the monochromator
*
* %Link
* H. Mutka, Nucl. Instr. and Meth. A 338 (1994) 144
* %Link
* http://www.ill.eu/fr/instruments-support/instruments-groups/instruments/in4c
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_IN4(lambda=2.2, dlambda=0.1, DM=3.355, ETAM=35, RMH=-1, ratio=4, dE=0, Sapphire_present=1, string sample_coh="Dirac2D.sqw", string sample_inc="NULL", int order=1)
DECLARE %{
double A1, RMH, RMV=-1.9;
double LFS = 0.675; /* FC to Sample distance */
double LSD = 2; /* Sample to Detector distance */
double LVS = 0.583; /* BC1 to VS distance */
double sample_width = 0.05;
double sample_thickness = 1e-3;
double sample_height = 0.05;
double environment_radius = 0.05;
double environment_thickness = 1e-3;
#pragma acc declare create( environment_thickness )
double container_thickness = 5e-4;
#pragma acc declare create( container_thickness )
char environment[] = "Al.laz";
char container[] = "V.laz";
/* the following variables are computed in the IN4 configuration */
double d0, d2; /* IN4c distances used in NoMad/IN4 doc (Ross/Rols) */
double phase1F = 0;
double nu = 0;
double LMS = 0; /* [m] Mono-sample distance (aka d1) */
double LRM = 0; /* [m] Distance from source to monochromator. */
double bctr = 0; /* [m] background chopper BC2 translation from BC1 */
double phase12 = 0; /* [deg] Chopper phase BC2 wrt BC1 */
char mon_sqw[1024];
char mon_qe[1024];
double Lmin, Lmax;
double t1F=0;
double t12=0;
double Ei=0;
/* Write_Sqw: writes an Sqw file for Isotropic_Sqw as a Dirac 2D array
INPUT:
dq: [1] momentum binning between adjacent Dirac peaks. 0 to get bins/10.
dw [1] energy binning between adjacent Dirac peaks. 0 to get bins/10.
max_q: [Angs] maximum momentum transfer to generate [Angs]
max_w: [meV] maximum energy transfer to generate [meV]
bins: [1] S(q,w) size is bins x bins.
filename: [str] output filename
OUTPUT:
a file containing S(q,w)
the return value is the number of Durac peaks generated
Simple usage: Write_Sqw_Dirac(0, 0, 20, 500, 1000, "Dirac2D.sqw") */
long Write_Sqw_Dirac(long dq, long dw,
double max_q, double max_w, long bins, char *filename)
{
double index_q, index_w;
double min_q=0, min_w=0;
long bin_q=0, bin_w=0;
long count=0;
FILE *fid = NULL;
fid = fopen(filename, "w+");
if (!fid) return(0);
/* check binning */
if (bins <= 0) bins=1000; /* 1000x1000 makes a 8 Mb array */
if(dq <= 0) dq=bins/10;
if(dw <= 0) dw=bins/10;
bin_q=bins; bin_w=bins;
/* write header */
fprintf(fid,
"# Sqw data file for Isotropic_Sqw\n"
"# model S(q,w) as a set of Dirac peaks, to obtain the 2D resolution function\n"
"# on a (q,w) grid. (q,w) grid=%g Angs, %g meV.\n"
"# filename: %s\n"
"#\n"
"# Physical parameters:\n"
"# sigma_coh 1 coherent scattering cross section in [barn]\n"
"# sigma_inc 0 incoherent scattering cross section in [barn]\n"
"# sigma_abs 0 absorption scattering cross section in [barn]\n"
"# density 1 in [g/cm^3.5]\n"
"# weight 1 in [g/mol]\n"
"# nb_atoms 1 in [atoms/unit cell]\n"
"#\n", (max_q-min_q)/bin_q, (max_w-min_w)/bin_w, filename);
/* write q axis */
fprintf(fid,
"# WAVEVECTOR vector of m=%i values %g:%g in [Angstroem-1]: q\n",
bin_q, min_q, max_q);
for (index_q=0; index_q < bin_q; index_q++) {
double q = min_q+index_q*(max_q-min_q)/bin_q;
fprintf(fid, "%g ", q);
}
fprintf(fid, "\n");
/* write w axis */
fprintf(fid,
"# ENERGY vector of n=%i values %g:%g in [meV]: w\n",
bin_w, min_w, max_w);
for (index_w=0; index_w < bin_w; index_w++) {
double w = min_w+index_w*(max_w-min_w)/bin_w;
fprintf(fid, "%g ", w);
}
fprintf(fid, "\n");
/* write Sqw matrix as zero except when on grid */
fprintf(fid,
"# matrix of S(q,w) values (m=%i rows x n=%i columns), one row per q value: sqw\n",
bin_q, bin_w);
for (index_q=0; index_q < bin_q; index_q++) {
for (index_w=0; index_w < bin_w; index_w++) {
double sqw = 0;
if (fmod(index_q, dq) == 0 && fmod(index_w, dw) == 0) {
sqw=1; count++; }
fprintf(fid, "%g ", sqw);
}
fprintf(fid, "\n");
}
fprintf(fid, "\n");
fprintf(fid, "# end of Sqw file %s\n", filename);
fclose(fid);
return(count); /* size of S(q,w) generated */
} /* Write_Sqw_Dirac */
%}
USERVARS %{
char flag_sample_choice;
char flag_source_order;
char order_extend;
char flag_sample;
char flag_env;
double vix;
double viy;
double viz;
%}
INITIALIZE %{
double Vi, Ki;
double thetaB;
double dSx=5.556; /* BC1 to sample along beam tube axis */
double dSy=1.3; /* lateral position of sample */
double L1F, L1M, LMF;
if (DM <= 0) {
if (lambda < 1.0) DM=1.118;
else if (lambda < 1.8) DM=1.677;
else DM=3.355;
}
thetaB = -asin(lambda/DM/2);
A1 = thetaB*RAD2DEG;
Ki = 2*PI/lambda;
Vi = K2V*fabs(Ki);
Ei = VS2E*Vi*Vi;
/* IN4c configuration */
/* compute distances for IN4 */
d2 = fabs(dSy/tan(2*thetaB));
LMS= fabs(dSy/sin(2*thetaB)); /* Monok to Sample = d1 */
d0 = dSx - d2 - LVS; /* VS to Monok */
/* set distances for IN4c */
LRM = 6.1 + LVS + d0;
L1M= LRM - 6.1; /* BC1 to Monok */
LMF= LMS-LFS; /* Monok to Fermi */
L1F= L1M + LMF; /* BC1 to Fermi */
/* FC rotation frequency (Master) */
nu = K2V/( fabs(DM*cos(thetaB)) * (LFS+LSD*pow( 1-dE/Ei, -1.5)) *(1-LMS/d0) );
phase12 = 22.5;
/* compute position of BC2 and phases */
t12 = phase12/360/(nu/ratio); /* time delay [s] */
bctr = t12*Vi;
if (bctr > 2.965) { /* chopper BC2 at its maximum position, from BC1 */
bctr = 2.965;
}
/* compute back the phases (in case bctr has changed) */
phase12 = -bctr*360*(nu/ratio)/Vi;
/* distance BC1-FC */
t1F = ((LMS-LFS)+(LRM-6.1))/Vi;
phase1F = -t1F*360*nu;
if (RMH < 0) {
double L = 1/(1/d0+1/LMS); /* Monok optical focusing distance */
RMH= 2*L/sin(DEG2RAD*A1); /* RH = 2*L/sin(DEG2RAD*A1); */
}
if (dlambda <= 0) dlambda = lambda*.95;
Lmin = lambda-dlambda;
Lmax = lambda+dlambda;
if (Lmin < 0) Lmin = 0.1;
if (Lmax > 3.5) Lmax = 3.5;
MPI_MASTER(
/* print some information when starting */
printf("%s: Thermal ToF spectrometer\n", NAME_INSTRUMENT);
printf(" Divergence at the lead shutter: dX =%g [deg]\n", atan2(0.2,5.2)*RAD2DEG);
printf(" Take-off at monochromator: A1 =%g [deg] ; DM=%g [Angs]\n", A1, DM);
printf(" Incident energy: Ei =%g [meV] ; Ki=%g [Angs-1]\n", Ei, Ki);
printf(" Incident velocity: Vi =%g [m/s]\n", Vi);
printf(" Source-Mono distance: LRM =%g [m]\n", LRM);
printf(" Virtual Source-Mono distance: d0 =%g [m]\n", d0);
printf(" Mono-Sample distance: LMS =%g [m] (d1)\n", LMS);
printf(" Curvature at monochromator: RMH =%g [m] ; RMV=%g [m]\n", RMH, RMV);
printf(" Fermi Chopper Frequency: nu =%g [Hz] ; rpm=%g [rpm]\n", nu, nu*60);
printf(" BC2 phase wrt BC1: PhiBC2=%g [deg] L12=%g [m] delay t12=%g [s] (BCTR)\n",
phase12, bctr, t12);
printf(" FC phase wrt BC1: PhiFC =%g [deg] L1F=%g [m] delay t1F=%g [s]\n",
phase1F, L1F, t1F);
/* print a visual representation of distances */
printf("Distances: in [m]\n");
printf("[H12] %g [BC1] %g [VS] %g [BC2] %g [PG] %g [FC] %g [Spl] %g [Det]\n",
6.1, LVS, bctr - LVS, LRM - (6.1 + bctr), LMS - LFS, LFS, LSD);
/* generate Sqw Dirac array */
printf("\nGenerate %li Dirac peaks on (q,w) grid.\n",
Write_Sqw_Dirac(0, 0, 3*Ki, 5*Ei, 1000, "Dirac2D.sqw"));
);
if (nu < 0 || nu > 700) exit(printf("ERROR: Invalid: Fermi master frequency nu=%g [Hz]. Change DM ?\n", nu));
if (fabs(A1) < 5) exit(printf("ERROR: Invalid: mono take-off angle A1=%g [deg]. Change DM ?\n", A1));
if (bctr < 0) exit(printf("Invalid: BC1-BC2 distance bctr=%g [m]. Change DM ?\n", bctr));
if (fmod(phase12, 45.0) < 22 )
printf("%s: WARNING: The choppers are NOT in closed position phase12=%g [deg].\n",
NAME_INSTRUMENT, phase12);
sprintf(mon_sqw, "user1 limits=[0 %g], user2 limits=[%g %g]", 3*Ki, -Ei, 4*Ei);
sprintf(mon_qe, "banana, angle limits=[-150 150], energy limits=[0 %g]", 4*Ei);
#pragma acc update device( environment_thickness )
%}
TRACE
COMPONENT Origin = Progress_bar()
AT (0, 0, 0) ABSOLUTE
EXTEND %{
flag_source_order = floor(rand01()*order_extend*.99);
/* tests for consistency */
int ord=INSTRUMENT_GETPAR(order);
if ((ord <= 0 || ord > 4)) {
ord = 4;
}
order_extend = ord;
%}
COMPONENT Thermal = Source_gen(
radius = 0.10/2,
focus_xw = 0.1,
focus_yh = 0.1,
dist =5.2,
lambda0=lambda, dlambda=dlambda,
T1=683.7,I1=0.5874e+13,T2=257.7,I2=2.5099e+13,T3=16.7 ,I3=1.0343e+12,
verbose = 1)
WHEN (flag_source_order == 0)
AT (0, 0, 0) RELATIVE Origin
COMPONENT Thermal2 = COPY(Thermal)
(lambda0=lambda/2)
WHEN (flag_source_order == 1)
AT (0, 0, 0) RELATIVE Origin
COMPONENT Thermal3 = COPY(Thermal)
(lambda0=lambda/3)
WHEN (flag_source_order == 2)
AT (0, 0, 0) RELATIVE Origin
COMPONENT Thermal4 = COPY(Thermal)
(lambda0=lambda/4)
WHEN (flag_source_order >= 3)
AT (0, 0, 0) RELATIVE Origin
/* could we put a guide in pile ? max l=2 */
/* bouchon barillet Phi=100mm, at 5.2 m */
COMPONENT Obt1 = Monitor_nD(
xwidth=0.1, yheight=0.1, options="disk, slit, x y", bins=100)
AT (0, 0, 5.2) RELATIVE Thermal
EXTEND %{
p *= order_extend;
%}
COMPONENT Obt1_lambda = Monitor_nD(xwidth=0.1, yheight=0.1, options="lambda limits=[.1 3.5]", bins=100)
AT (0, 0, 0.01) RELATIVE Obt1
/* sapphire filter to remove fast neutrons
c along beam axis, e=90 60x110 mm
*/
COMPONENT SapphireFilter = Filter_gen(xwidth=0.12, yheight=0.12,
filename="Al2O3_sapphire.trm")
WHEN (Sapphire_present)
AT (0,0,0.2) RELATIVE Obt1
COMPONENT Win1 = Monitor_nD(
xwidth=0.12, yheight=0.12, options="disk, slit, x y", bins=100)
AT (0,0, 0.4) RELATIVE Obt1
COMPONENT Win1_lambda = Monitor_nD(xwidth=0.06, yheight=0.1, options="lambda limits=[.1 3.5]", bins=100)
AT (0, 0, 0.01) RELATIVE Win1
/* BC1 should be as early as possible. Opening of slits: 22.5 deg i.e. 6 cm */
COMPONENT BC1 = DiskChopper(radius=0.603/2, nslit=8, isfirst=1,
theta_0=22.5, nu=nu/ratio, yheight=0.10, phase=0)
AT (0,0, 6.1) RELATIVE Thermal
/* the "Virtual Source" (which is just a slit) */
/* the monochromator makes an image of it onto the sample */
COMPONENT VS = Slit(xwidth=0.08, yheight=0.20)
AT (0,0, 0.583) RELATIVE BC1
COMPONENT BC2_slit = Slit(xwidth=0.07, yheight=.12)
AT (0,0, bctr-0.02) RELATIVE BC1
COMPONENT BC2_t = Monitor_nD(
xwidth=0.07, yheight=0.12, options="t limits=[0.0001 0.0015]", bins=100)
AT (0,0, bctr-0.01) RELATIVE BC1
COMPONENT BC2 = DiskChopper(radius=.643/2, nslit=8, theta_0=22.5,
nu=nu/ratio, delay=t12, yheight=0.14)
AT (0,0, bctr) RELATIVE BC1
COMPONENT BC2_t_post = COPY(BC2_t)
AT (0,0, 0.01) RELATIVE BC2
COMPONENT Cradle = Monitor_nD(
options="x y", bins=50, xwidth=.25, yheight=.25, restore_neutron=1)
AT (0,0,LRM) RELATIVE Thermal
COMPONENT Cradle_lambda = Monitor_nD(
options="lambda limits=[.1 3.5]", bins=100, xwidth=.25, yheight=.25, restore_neutron=1)
AT (0,0,LRM+0.01) RELATIVE Thermal
COMPONENT Cradle_t = Monitor_nD(
options="t limits=[0.0005 0.0019]", bins=100, xwidth=.25, yheight=.25,
restore_neutron=1)
AT (0,0,LRM) RELATIVE Thermal
COMPONENT Mono_xy = Monitor_nD(
options="x y", bins=50, xwidth=.22, yheight=.2, restore_neutron=1)
AT (0,0,0) RELATIVE Cradle
ROTATED (0, A1, 0) RELATIVE Cradle
SPLIT COMPONENT Mono = Monochromator_curved(
width=0.22, height=0.2, NH=11, NV=5, RV=RMV, RH=RMH,
DM=DM, mosaic=ETAM, reflect="HOPG.rfl", transmit="HOPG.trm")
AT (0,0,0) RELATIVE Cradle
ROTATED (0, A1, 0) RELATIVE Cradle
EXTEND %{
if (!SCATTERED) ABSORB; /* remove transmitted beam */
%}
COMPONENT Mono_out = Arm()
AT (0,0,0) RELATIVE Cradle
ROTATED (0, 2*A1, 0) RELATIVE Cradle
COMPONENT Mono_t = COPY(Cradle_t)
AT (0,0,0.1*(LMS-LFS)) RELATIVE Mono_out
COMPONENT FC_Pos = Monitor_nD(
yheight=0.064, xwidth=0.03, options="t limits=[0.001 0.0023]", bins=100,
restore_neutron=1)
AT (0,0,LMS-LFS) RELATIVE Mono_out
COMPONENT FC_Slit = Slit(yheight=0.064, xwidth=0.03)
AT (0,0,-0.03) RELATIVE FC_Pos
COMPONENT Fermi = FermiChopper(delay=t1F, radius=0.025, nu=-nu,
yheight=0.064, xwidth=0.023, nslit=50, length=0.025)
AT (0,0,0) RELATIVE FC_Pos
EXTEND %{
if (!SCATTERED) ABSORB;
vix=vx,viy=vy,viz=vz;
%}
/* sample position */
COMPONENT Sample_pos = Arm()
AT (0,0,LMS) RELATIVE Mono_out
COMPONENT Sample_rot = Arm()
AT (0,0,0) RELATIVE Sample_pos
ROTATED (0,45,0) RELATIVE Sample_pos
SPLIT 100 COMPONENT sample_flux = Monitor_nD(
xwidth = 0.06, yheight = 0.06, options = "x y",
restore_neutron=1, bins=60)
AT (0, 0, 0) RELATIVE Sample_pos
COMPONENT reset = Arm()
AT (0,0,0) RELATIVE PREVIOUS
EXTEND %{
flag_sample = 0;
flag_env = 0;
flag_sample_choice = (rand01() > 0.5 ? 1 : 2);
p *= 2; /* compensate for MC choice on 2 samples */
%}
COMPONENT sample_tof = Monitor_nD(
xwidth = 0.1, yheight = 0.1, options = "x, time limits=[0.0018 0.0019]",
bins=100, restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
COMPONENT sample_lambda = Monitor_nD(
xwidth = 0.1, yheight = 0.1, options = "lambda limits=[.1 3.5]",
bins=300, restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
COMPONENT sample_w = Monitor_nD(
xwidth = 0.1, yheight = 0.1, options = "energy", min=0, max=2*Ei,
bins=100, restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
COMPONENT sample_qxy = Monitor_nD(
xwidth = 0.1, yheight = 0.1, options = "kx limits=[-0.19 0.19] ky limits=[-0.16 0.16]",
bins=100, restore_neutron=1)
AT (0, 0, 0) RELATIVE Sample_pos
/* sample environment and cell */
/* external shield */
COMPONENT Environment_in=Isotropic_Sqw(
radius = environment_radius, yheight = 0.1, thickness=environment_thickness,
Sqw_coh=environment, concentric=1, verbose=0, order=1, d_phi=2*RAD2DEG*atan2(1, LSD)
) WHEN (environment_thickness > 0)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND %{
flag_env += SCATTERED;
%}
/* sample container */
COMPONENT Container_in=Isotropic_Sqw(
xwidth = sample_width+1e-4+container_thickness,
zdepth = sample_thickness+1e-4+container_thickness,
yheight = sample_height, thickness=container_thickness,
Sqw_coh=container, concentric=1, verbose=0, order=1, d_phi=2*RAD2DEG*atan2(1, LSD)
) WHEN(container_thickness > 0)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND
%{
flag_env += SCATTERED;
%}
COMPONENT SampleS=Isotropic_Sqw(
xwidth = sample_width, zdepth=sample_thickness, yheight = sample_height,
Sqw_coh= sample_coh, Sqw_inc= sample_inc, p_interact=0.9,
d_phi=2*RAD2DEG*atan2(1, LSD), order=1)
WHEN (flag_sample_choice == 1)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND
%{
flag_sample += SCATTERED;
%}
COMPONENT SampleV=Incoherent(xwidth = sample_width, zdepth=sample_thickness, yheight = sample_height,
focus_ah = 2*RAD2DEG*atan2(1, LSD), focus_aw=150.0)
WHEN (flag_sample_choice == 2)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND
%{
flag_sample += SCATTERED;
%}
COMPONENT Container_out=COPY(Container_in)(concentric=0)
WHEN(container_thickness > 0)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND
%{
flag_env += SCATTERED;
%}
/* external shield */
COMPONENT Environment_out=COPY(Environment_in)(concentric=0)
WHEN (environment_thickness > 0)
AT (0, 0, 0) RELATIVE Sample_rot
EXTEND %{
flag_env += SCATTERED;
%}
COMPONENT Detector = Monitor_nD(radius=LSD, yheight=2, restore_neutron=1,
options="theta limits=[-15 135] bins=300, y bins=100, banana")
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_sample = COPY(Detector)
WHEN (flag_sample)
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_env = COPY(Detector)
WHEN (flag_env)
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_Sqw = Sqw_monitor(
nq=1000, nE=1000, vix="vix",viy="viy",viz="viz",
qmin=0, qmax=10, Emin=-50, Emax=50, filename="Sqw_full")
WHEN (flag_sample && flag_sample_choice == 1)
/* "user1 limits=[0 10], user2 limits=[-50 50]" */
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_qe = Monitor_nD(
radius=LSD, yheight=2, bins=500, restore_neutron=1,
options=mon_qe)
WHEN (flag_sample && flag_sample_choice == 1)
/* "banana, angle limits=[-150 150], energy limits=[0 50]" */
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_SqwV = COPY(Detector_Sqw)(filename="Sqw_filtered")
WHEN (flag_sample && flag_sample_choice == 2)
AT (0,0,0) RELATIVE Sample_pos
COMPONENT Detector_qeV = COPY(Detector_qe)
WHEN (flag_sample && flag_sample_choice == 2)
AT (0,0,0) RELATIVE Sample_pos
/* display static shapes for viz puposes only =============================== */
COMPONENT Fuel_centre = Arm()
AT (0.47, 0, -0.22) RELATIVE Thermal
COMPONENT H12_tube = Shape(radius=0.1/2, yheight=5)
AT (0, 0, 2.5) RELATIVE Thermal
ROTATED (90, 0, 0) RELATIVE Thermal
COMPONENT Fuel = Shape(radius=.2, yheight=1.3)
AT (0, 0, 0) RELATIVE Fuel_centre
COMPONENT D2O_vessel = Shape(radius=1.3, yheight=1)
AT (0, 0, 0) RELATIVE Fuel_centre
COMPONENT ILL5_wall = Shape(xwidth=4, yheight=3, zdepth=.5)
AT (0,0,27) RELATIVE Fuel_centre
COMPONENT H2O_vessel = Shape(radius=3, yheight=1)
AT (0, 0, 0) RELATIVE Fuel_centre
COMPONENT Concrete_wall = Shape(radius=4.75, yheight=1)
AT (0, 0, 0) RELATIVE Fuel_centre
COMPONENT Barillet = Shape(radius=0.5, yheight=0.5)
AT (0,0, 4.7+0.5/2) RELATIVE Thermal
ROTATED (90, 0, 0) RELATIVE Thermal
COMPONENT Pillar = Shape(xwidth=0.5, yheight=2, zdepth=0.5)
AT (1.5, 0, 17.5) RELATIVE Thermal
END
|