1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Instrument: Light_H15_IN6
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: 17th Jan 2005.
* Origin: <a href="http://www.ill.fr">ILL (France)</a>
* %INSTRUMENT_SITE: ILL
*
* The IN6 Time-of-Flight simulation at the ILL (instrument only).
*
* %Description
*
* IN6 is a time focussing time-of-flight spectrometer designed for quasielastic and
* inelastic scattering for incident wavelengths in the range of 4 to 6 Angs.
*
* An intense beam is extracted from the H15 guide by a vertically focussing
* monochromator array. It consists of three composite pyrolytic graphite
* monochromators using the full height (20 cm) of the guide and focussing the beam
* at the sample position. In order to minimise the interference with the
* subsequent instruments, the monochromator can deliver only four wavelengths:
* 4.1; 4.6; 5.1; and 5.9 Angs. The second order reflection from the graphite
* monochromator is removed by a beryllium-filter cooled at liquid nitrogen
* temperature.
* To achieve the time-focussing condition, the beam is pulsed by a Fermi chopper.
* It has a small slot length to ensure a good transmission. The normal distance
* between the Fermi chopper and the sample is 38 cm. To prevent frame-overlap when
* the chopper is rotating faster than 7500 rpm, a suppressor chopper is placed
* before the Fermi chopper and rotates in phase with the latter.
*
* The secondary spectrometer consists first of an evacuated sample area. The
* detector bank is entirely covered with detector boxes, thus avoiding the
* inconvenience of moving the counters.
*
* This instrument model contains a cold source a triple monochromator
* (using the GROUP), two Fermi Choppers (including one background chopper), a
* liquid sample handling coherent and incoherent processes (elastic and inelastic)
* with multiple scattering, customized monitors, and the SPLIT mechanism to
* improve the statistics. The H15 guide is not described in this model.
*
* %Example: lambda=4.14 Detector: M_theta_t_all_I=120000
*
* %Parameters
* lambda: [Angs] wavelength within 4.14|4.6|5.12|5.92
* dlambda: [Angs] wavelength HALF spread. default is 0.075
* SPEED: [rpm] Fermi chopper speed. -1=auto, 0=stopped in open pos.
* RATIO: [1] Suppressor speed ratio. -1=no suppressor.
* PHASE: [deg] Fermi phase w/r/ to Suppressor. -360=auto
* M1: [coder values] monochromator motor 1 position. -1=auto
* M2: [coder values] monochromator motor 2 positinn. -1=auto
* M3: [coder values] monochromator motor 3 position. -1=auto
* MONITOR: [something like time in s] monitor preset
* CHA_WIDTH: [us] channel width. -1=auto
* TOF_CHA_RESOL: [1] number of channels.
* TOF_DELAY: [us] TOF delay. -1=auto
* ELPEAK: [1] elastic peak channel. -1=auto
* mFC: [1] super mirror FermiChopper coating m-value
* Sqw_coh: [str] sample coherent S(q,w) file name
* Sqw_inc: [str] sample incoherent S(q,w) file name
* radius: [m] outer radius of sample hollow cylinder
* thickness: [m] thickness of sample hollow cylinder
*
* %Link
* <a href="http://www.ill.fr/in6">The IN6@ILL Yellow Pages</a>
* %Link
* R.Scherm et al, "Another Time of Flight Spectrometer", ILL Report 76S235, 1976
* %Link
* R.Scherm, "A high-resolution spectrometer ...", report Jul-295-NP, Kernforschungsanlage Julich, 1965
* %Link
* Y.Blanc, "Le spectrometre a temps de vol IN6", ILL Report 83BL21G, 1983
* %Link
* K.H.Beckurts et al, Neutron physics, Kernforschungsanlage Karlsruhe, 1964 (p317)
* %Link
* R.Scherm and T.Springer, "Proposal of a multiple Chopper...", Kernforschungsanlage Julich, 19xx
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_IN6(lambda=4.14, dlambda=0.075, SPEED=-1, M1=-1, M2=-1, M3=-1, MONITOR=1, CHA_WIDTH=-1, TOF_DELAY=-1, TOF_CHA_RESOL=128, ELPEAK=-1, RATIO=1, mFC=0, PHASE=-360, string Sqw_coh="Rb_liq_coh.sqw", string Sqw_inc="Rb_liq_inc.sqw", radius=0.01, thickness=0.005)
DECLARE
%{
/* capture flux positions from moderator: 21.4 28.4 61.2 */
/* variables for IN6 */
double DM; /* mono d-spacing (Angs) */
double mos;
double RV;
/* Bragg angles of the 3 monochromators */
double A1;
double A2;
double A3;
double LME; /* distance monochromator 2 <--> sample */
double LMM; /* distance between 2 monochromators */
double LED; /* distance sample <--> detector */
double LCE; /* distance fermi chopper <--> sample */
double LCC; /* [m] Chopper1-Chopper2 distance */
double Frequency, vi;
#pragma acc declare create(Frequency)
double ref_phas, phas_ferm;
double iTOF_DELAY; /* time of arrival at sample position, from source */
double iCHA_WIDTH;
double iTOF_CHA_RESOL;
double iELPEAK;
double iRATIO;
#pragma acc declare create(iRATIO)
double iSPEED;
double A2cradle;
double iPHASE, period;
/* flags per event type */
char flag_ci, flag_co, flag_ct; /* cryo-in/out container */
char flag_single, flag_multi;
/* monitoring sample env */
double ki_x, ki_y, ki_z;
double kf_x, kf_y, kf_z;
double dq, dw, vf;
char optL[256];
char optT[256];
char opt1[256]; /* options for Monitor_nD */
char opt2[256];
char opt3[256];
%}
USERVARS
%{
double vix;
double viy;
double viz;
double monok_index;
%}
INITIALIZE
%{
/* capture flux positions from moderator: 21.4 28.4 61.2 */
/* variables for IN6 */
DM = 3.355; /* mono d-spacing (Angs) */
mos= 40;
RV = 3;
/* Bragg angles of the 3 monochromators */
LME = 2.1; /* distance monochromator 2 <--> sample */
LMM = 0.030; /* distance between 2 monochromators */
LED = 2.483; /* distance sample <--> detector */
LCE = 0.395; /* distance fermi chopper <--> sample */
LCC = 0.2; /* [m] Chopper1-Chopper2 distance */
ref_phas=0;
dq=0;
dw=0;
double chopper_const = 252.77; /*constant in chopper SPEED formula*/
double Ki, Ei, theta;
double tmin, tmax;
double dE = 0.0; /* energy transfer */
Ki = 2*PI/lambda;
vi = K2V*fabs(Ki);
Ei = VS2E*vi*vi;
/* IN6: calculate theta angles for 3 monochromators*/
theta = asin(lambda/DM/2);
A2 = theta*2;
A1 = atan2(LME*sin(A2),(LME*cos(A2)+LMM))*RAD2DEG;
A3 = atan2(LME*sin(A2),(LME*cos(A2)-LMM))*RAD2DEG;
A2 *=RAD2DEG;
A2cradle = A2;
RV = 2*LME*sin(theta);
if (A1<0.0) A1=180+A1;
if (A2<0.0) A2=180+A2;
if (A3<0.0) A3=180+A3;
if (M1 == 0) A1 = 0; else
if (M1>=0) A1 = -0.0210199*M1+178.55; else M1 = -(A1-178.55)/0.0210199;
if (M2 == 0) A2 = 0; else
if (M2>=0) A2 = -0.0210302*M2+182.558; else M2 = -(A2-182.558)/0.0210302;
if (M3 == 0) A3 = 0; else
if (M3>=0) A3 = -0.0206945*M3+187.566; else M3 = -(A3-187.566)/0.0206945;
/* IN6: compute Tof settings from Light.Custom.Light_Custom_IN6_Calc_TOF_Choppers */
{
double el_t_resol = 0.125; /* [us] Electronic Time Base */
ref_phas = 0; /* [deg] Reference Phase */
double phase_offset= 0; /* [deg] Phase Offset (added to Fermi phase) */
double el_delay = 44.875; /* [us] Default Electronic Delay */
double speed, chan_width, dead_time, time_of_flight, trav_time;
double delta_phase, el_peak_O, delay;
if (TOF_CHA_RESOL<=0) iTOF_CHA_RESOL=128; else iTOF_CHA_RESOL=TOF_CHA_RESOL;
if (RATIO <= 0) iRATIO = 1; else iRATIO =RATIO;
#pragma acc update device(iRATIO)
if (ELPEAK >= 0 && ELPEAK<=iTOF_CHA_RESOL) iELPEAK = ELPEAK;
else iELPEAK=ceil(iTOF_CHA_RESOL/2);
speed = 60*K2V/(DM*cos(theta)*(LCE+(LED*pow((1-dE/Ei),-1.5))));
period = 0.5e6 * 60 * iRATIO/speed;
chan_width = floor(period/el_t_resol/iTOF_CHA_RESOL)*el_t_resol;
dead_time = period-(iTOF_CHA_RESOL*chan_width);
time_of_flight = (0.07+LCC+LCE+LED)/vi*1e6;
trav_time = LCC/vi*1e6;
delta_phase = (trav_time/period)*180;
phas_ferm = ref_phas + delta_phase;
if (fmod(iRATIO, 2) == 0) phas_ferm *= 2;
phas_ferm += phase_offset;
el_peak_O = floor((time_of_flight + el_delay)/chan_width);
delay = (el_peak_O-iELPEAK) * chan_width;
if (iELPEAK >= el_peak_O) delay += period;
if (delay <= 1) delay = 2;
if (PHASE>-180 && PHASE <360) iPHASE=PHASE; else iPHASE=-phas_ferm;
if (CHA_WIDTH <=0) iCHA_WIDTH=chan_width; else iCHA_WIDTH=CHA_WIDTH;
if (TOF_DELAY <=0) iTOF_DELAY=delay; else iTOF_DELAY=TOF_DELAY;
if (SPEED <0) iSPEED=speed; else iSPEED=SPEED;
Frequency = iSPEED/60;
#pragma acc update device(Frequency)
printf("Instrument Simulation %s (%s)\n", instrument_name, instrument_source);
printf(" using computed monochromator take-off angles: %g %g %g [deg]\n", A1, A2, A3);
printf("Wavelength [AA] %g\n", lambda);
printf("Neutron velocity [m/s] %g\n", vi);
printf("Monochr. Bragg angle [deg] %g\n", A2/2);
printf("Incident Energy [meV] %g\n", Ei);
printf("Focusing Energy transfer[meV] %g\n", dE);
printf("Travel time: Supp./Fermi [us] %g\n", trav_time);
printf("Travel time: Supp./Det. [us] %g\n", time_of_flight);
printf("TOF Delay [us] %g\n", delay);
printf("TOF Dead Time [us] %g\n", dead_time);
printf("TOF Period (1 cycle) [us] %g\n", period);
printf("TOF Channel width [us] %g\n", chan_width);
printf("CHOP Fermi Phase [deg] %g\n", iPHASE);
printf("CHOP Suppressor Phase [deg] %g\n", ref_phas);
printf("CHOP Fermi Speed [rpm] %g\n", iSPEED);
printf("CHOP Suppressor Speed [rpm] %g\n", iSPEED/iRATIO);
printf("Number of time channels %g\n", iTOF_CHA_RESOL);
printf("Current Elastic Peak Ch. %g\n", iELPEAK);
printf("Elast. peak ch. for 0-delay %g\n", el_peak_O);
/* chopper to detector */
tmin = time_of_flight*1e-6 - (iCHA_WIDTH*iELPEAK-iTOF_DELAY)*1e-6;
}
/* distance to cover to detector from chopper: LCE+LED
Center time on 0 at Fermi center
LCE from chopper to sample pos
LED from sample to detector
propagation time t_p =(LCE+LED)/vi;
falls on ELPEAK channel.
Tmin = t_p-iCHA_WIDTH*1e-6*iELPEAK
Tmax = Tmin +N_CHan...
*/
tmax = tmin+iTOF_CHA_RESOL*iCHA_WIDTH*1e-6;
printf("Time window: min=%g max=%g delay=%g tof-width=%g [ms]\n", tmin*1000, tmax*1000, iTOF_DELAY*1e-3, (tmax-tmin)*1000);
sprintf(opt2, "kxy limits=[0 5] bins=50, energy limits=[%g %g] bins=40, banana, parallel",
(Ei-20 < 0 ? 0 : Ei-20), Ei+20);
sprintf(opt1, "angle limits=[0 180] bins=180, energy limits=[%g %g] bins=40, banana, parallel",
(Ei-20 < 0 ? 0 : Ei-20), Ei+20);
sprintf(opt3,"user1 limits=[0.5,3.5] bins=9, lambda limits=[%g %g] bins=20, square, per cm2",0.97*lambda,1.03*lambda);
sprintf(optL,"lambda limits=[%g %g] bins=50",lambda-dlambda,lambda+dlambda);
sprintf(optT,"t slit limits=[%g %g]",tmin, tmax);
%}
/* -------------------------------- TRACE -------------------------------- */
TRACE
REMOVABLE COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
REMOVABLE COMPONENT VCS = Source_gen(
yheight = 0.2,
xwidth = 0.03,
focus_xw = 0.03,
focus_yh = 0.2,
lambda0 = lambda,
dlambda = dlambda,
T1=216.8,I1=1.24e+13, /* VCS parameters */
T2=33.9, I2=1.02e+13,
T3=16.7 ,I3=3.0423e+12,
verbose = 1)
AT (0, 0, 0) RELATIVE Origin
REMOVABLE COMPONENT SourceTarget = Arm()
AT (0,0,2.55) RELATIVE PREVIOUS
/* ----------------------- IN6 Monochromators GROUP ----------------------- */
SPLIT COMPONENT Cradle = Arm()
AT (0,0,0.15) RELATIVE PREVIOUS
EXTEND
%{
monok_index=0;
%}
/* triple-monochromator description:
* 7 blades, vertically focusing RV=3 m, fixed.
* Each blade is 54 mm width, 29 mm heigh. Vertical angle +/- 3 deg.
* mosaic 23 to 40 min. Motors 0.012 deg/step
* distance between each crystal ensemble 4 cm
*/
COMPONENT Mono1 = Monochromator_curved(
RV = RV, NV = 7,NH=1,
zwidth = 0.054, yheight = 0.029,
DM = 3.355, gap = 0.001,
mosaic = 40, r0=1, t0=1,
reflect="HOPG.rfl", transmit="HOPG.trm")
AT (0,0, -LMM) RELATIVE Cradle ROTATED (0,A1/2,0) RELATIVE Cradle
EXTEND
%{
if (SCATTERED) { monok_index=1; }
%}
COMPONENT Mono2 = Monochromator_curved(
RV = RV, NV = 7,NH=1,
zwidth = 0.054, yheight = 0.029,
DM = 3.355, gap = 0.001,
mosaic = 40, r0=1, t0=1,
reflect="HOPG.rfl", transmit="HOPG.trm")
AT (0,0, 0) RELATIVE Cradle ROTATED (0,A2/2,0) RELATIVE Cradle
EXTEND
%{
if (SCATTERED) { monok_index=2; }
%}
COMPONENT Mono3 = Monochromator_curved(
RV = RV, NV = 7,NH=1,
zwidth = 0.054, yheight = 0.029,
DM = 3.355, gap = 0.001,
mosaic = 40, r0=1, t0=1,
reflect="HOPG.rfl", transmit="HOPG.trm")
AT (0,0, +LMM) RELATIVE Cradle ROTATED (0,A3/2,0) RELATIVE Cradle
EXTEND
%{
if (SCATTERED) { monok_index=3; }
%}
/* sample position direction */
COMPONENT mono_out = Arm()
AT (0,0,0) RELATIVE Cradle ROTATED (0,A2cradle,0) RELATIVE Cradle
/* --------------------------- IN6 Suppressor ------------------------ */
COMPONENT SuppPos = Arm()
AT (0,0,LME-LCE-LCC) RELATIVE mono_out
COMPONENT Mon_SuppInL = Monitor_nD(
xwidth = 0.052, yheight = 0.098,
options=optL)
AT (0,0,-0.07-0.002) RELATIVE SuppPos
COMPONENT Mon_SuppInT = Monitor_nD(
xwidth = 0.052, yheight = 0.098,
options=optT, bins=iTOF_CHA_RESOL)
AT (0,0,-0.07-0.001) RELATIVE SuppPos
EXTEND
%{
double Vi=sqrt(vx*vx+vy*vy+vz*vz); /* K2V*2*PI/sLambda; */
double ratio=PI*Frequency/iRATIO/atan(0.052/0.14);
//The opening angle for one neutron times number of openings to total closed angle.
if (iRATIO && Vi) {
/* we fisrt put all events in the Fermi time transmission window */
/* Fermi opening time is atan(w/length)/PI/frequency */
double Tfermi=atan2(0.052,0.14)/Frequency/PI; /* opening time for Fermi [s] */
t = -(0.071/Vi)+(rand01()-0.5)*Tfermi; /* center time on DELAY at Fermi position */
/* geometric integrated transmission of Fermi=0.55 % */
/* 2 sides*angular opening = 2*atan2(0.031/136,0.013)*RAD2DEG/360 */
p *= 4*atan2(0.052,0.14)*RAD2DEG/360;
}
%}
/* Suppressor Chopper position. */
COMPONENT Suppressor = FermiChopper(radius=0.07, nu=Frequency/iRATIO,
yheight=0.098, xwidth=0.052, nslit=1, R0=0, phase=0,
length=0.012, eff=1, verbose=1)
WHEN (iRATIO > 0)
AT (0,0,0) RELATIVE SuppPos
COMPONENT Mon_SuppOutT = Monitor_nD(
xwidth = 0.052, yheight = 0.098,
options="t slit limits=[-700e-6 700e-6]", bins=iTOF_CHA_RESOL)
AT (0,0,+0.07+0.001) RELATIVE SuppPos
/* --------------------------- IN6 Fermi ------------------------ */
COMPONENT SlitFC = Slit(
xwidth = 0.0441, yheight = 0.0641)
AT (0, 0, LME-LCE-0.041) RELATIVE mono_out
COMPONENT FermiPos = Arm()
AT (0,0,LME-LCE) RELATIVE mono_out
COMPONENT FermiM = FermiChopper(phase=iPHASE, radius=0.04, nu=Frequency,
yheight=0.064, xwidth=0.044, nslit=200.0, R0=.99,
Qc=(mFC < 1 && mFC ? mFC*0.02176 : 0.02176), alpha=2.33, m=mFC, length=0.012, eff=1.0, verbose=1)
AT (0,0,0) RELATIVE FermiPos
COMPONENT Mon_FermiOutdT = Monitor_nD(
xwidth = 0.044, yheight = 0.064,
options="t slit limits=[180e-6 365e-6]", bins=iTOF_CHA_RESOL)
AT (0,0,+0.06+0.001) RELATIVE FermiPos
/* --------------------------- IN6 Fermi END --------------------- */
COMPONENT MonokMonitor = Monitor_nD(
xwidth = 0.2, yheight = 0.2, user1="monok_index", username1="Monoch. index",
options=opt3)
AT (0,0,+0.06+0.002) RELATIVE FermiPos
/* sample position (at 2.1 m from monoks) */
COMPONENT Mon_SampleInT = Monitor_nD(
xwidth = 0.05, yheight = 0.05,
options=" t limits=[255e-6 425e-6] parallel, per cm2", bins=iTOF_CHA_RESOL)
AT (0,0,LME-.273) RELATIVE mono_out
COMPONENT Mon_SampleInXY = Monitor_nD(
xwidth = 0.06, yheight = 0.1,
options="x y parallel, per cm2 bins=50")
AT (0,0,0) RELATIVE PREVIOUS
/* BEGIN ********************************** Sample environment and sample */
COMPONENT sample_pos = Arm()
AT (0,0,LME) RELATIVE mono_out
EXTEND %{
vix=vx;
viy=vy;
viz=vz;
%}
SPLIT COMPONENT Sample=Isotropic_Sqw(
radius = radius, thickness=thickness, yheight = 0.055,
Sqw_coh=Sqw_coh, Sqw_inc=Sqw_inc, p_interact=0.9
) AT (0, 0, 0) RELATIVE sample_pos
EXTEND
%{
if (!SCATTERED) ABSORB;
%}
COMPONENT Out = PSD_monitor_4PI(filename="out")
AT (0,0,0) RELATIVE sample_pos
COMPONENT M_theta_t_all = Monitor_nD(
xwidth=2.5, yheight=1,
options=opt1,
bins=100)
AT (0,0,0) RELATIVE sample_pos
COMPONENT Detector_nM = Sqw_monitor(
radius=1.3, yheight=1,
nq=100, qmin=0, qmax=6,
nE=100, Emin=-20, Emax=20,
vix="vix", viy="viy", viz="viz",
filename="Detector_nM")
AT (0, 0, 0) RELATIVE PREVIOUS
END
|