1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/*******************************************************************************
* McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: ILL_Lagrange
*
* %Identification
* Written by: E. Farhi
* Date: 13 Apr 2006
* Origin: LLB/ILL
* %INSTRUMENT_SITE: ILL
*
* IN1-Lagrange hot neutrons spectrometer for liquids at the ILL.
*
* %Description
* IN1-Lagrange hot neutrons spectrometer for liquids at the ILL.
*
* The dedicated liquid and amorphous instrument Lagrange is a spectrometer with
* constant final neutron energy, and variable incoming neutron energy.
* The analyser is a focusing barrel covered with PG analyser, all focusing to
* the detector. The flux is thus very high, and the resolution is that given
* buy the PG crystal mocaicity.
*
* The monochromator take-off angle is 2Theta_M ~ 20-25 deg, variable. The available
* monochromators are all vertically focusing, Cu (200) for 0.7 Angs, Cu (220)
* for 0.5 Angs.
*
* Cu 002 DM=1.807 AA
* Cu 220 DM=1.278 AA
* PG 002 DM=3.355 AA
*--------------------------
* %Example: lambda=0.897 Detector: Detector_I=3704.83
*
* %Parameters
* lambda: [Angs] Wavelength at monochromator
* DM: [Angs] d-spacing of monochromator
* RV: [m] Monochromator vertical curvature, 0=flat, -1=automatic
* L1: [m] Source-Monochromator distance
* L2: [m] Monochromator-Sample distance
* L3: [m] Sample-Detector distance
* coh: [str] File name for sample coherent scattering contribution
* inc: [str] File name for sample incoherent scattering contribution
* verbose: [1] Print spectrometer configuration. 0 to be quiet
*
* %Link
* The <a href="http://www.ill.eu/d4">D4 diffractometer</a> at the ILL
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_Lagrange(lambda=0.897, DM=1.807, RV=-1, string coh="Rb_liq_coh.sqw", string inc="Rb_liq_inc.sqw", L1=6.35, L2=2.55, L3=0.901, verbose=1)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double A1,A5; /* rotation of monok and analyser */
double RVA; /* focusing of analyser */
%}
USERVARS %{
double RotateNeutron;
int flag_env;
double vix;
double viy;
double viz;
%}
INITIALIZE
%{
double L;
double KI, Vi, EI;
double KF, Vf, EF, DA, lambdaF;
/* incoming beam */
KI = (2*PI)/lambda;
A1 =asin(lambda/(2*DM))*RAD2DEG;
A1 *= -1;
L = 1/(1/L1+1/L2);
if (RV < 0) RV=2*L*sin(DEG2RAD*A1);
Vi = K2V*fabs(KI);
EI = VS2E*Vi*Vi;
/* analyser beam */
DA = 3.355; /* PG002 d-spacing */
EF = 4.5;
Vf = sqrt(EF/VS2E);
KF = Vf*V2K;
lambdaF = (2*PI)/KF;
A5 = asin(lambdaF/(2*DA))*RAD2DEG;
RVA = fabs(L3/2/cos(A5*DEG2RAD));
/* display information */
if (verbose) {
printf("%s: Detailed Lagrange configuration\n", NAME_INSTRUMENT);
printf("* Incoming beam: lambda=%.4g [Angs] EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s] \n\n",
lambda, EI, KI, Vi);
printf("* Monochromator: DM=%.4g [Angs] RV=%.4g [m] %s, take-off A1=%.4g [deg]\n",
DM, RV, (!RV ? "flat" : "curved"), A1);
printf("* Analyser: DA=%.4g [Angs] RV=%.4g [m] %s, take-off A5=%.4g [deg]\n",
DA, RVA, "curved", A5);
printf("* Outgoing beam: lambda=%.4g [Angs] EF=%.4g [meV] KF=%.4g [Angs-1] Vf=%g [m/s] \n",
lambdaF, EF, KF, Vf);
}
RV = -fabs(RV);
%}
TRACE
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
/* Hot source at the ILL */
COMPONENT Source = Source_gen(
xwidth = 0.05, yheight=0.20, dist = L1, focus_xw = fabs(0.18*sin(A1*DEG2RAD)), focus_yh = 0.20,
lambda0 = lambda, dlambda = lambda*0.03,
T1=1695,I1=1.74e13,T2=708,I2=3.9e12)
AT (0, 0, 0) RELATIVE Origin
COMPONENT PSD = PSD_monitor(
nx = 20, ny = 20, filename = "PSD1", xwidth = 0.03,
yheight = 0.03)
AT (0, 0, L1-0.5) RELATIVE Source
/* L_monitor: just sensitive to the neutron wavelength. 1D histogram measured in AA*/
COMPONENT Lmon1 = L_monitor(
nL = 50, filename = "Lmon1", xwidth = 0.1, yheight = 0.1,
Lmin = lambda*0.95, Lmax = lambda*1.05)
AT (0, 0, 0.01) RELATIVE PREVIOUS
/* monochromator cradle ===================================================== */
COMPONENT mono_cradle = Arm()
AT (0, 0, L1) RELATIVE Origin
ROTATED (0, A1, 0) RELATIVE Origin
SPLIT COMPONENT Monok = Monochromator_curved(
width = 0.18, height = 0.2, NH = 1, NV = 7, RV=RV,
mosaich = 30, mosaicv = 30, DM = DM)
AT (0, 0, 0) RELATIVE mono_cradle
/* TIP: positioning diffraction direction for monok (order 1) */
COMPONENT mono_out = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, 2*A1, 0) RELATIVE Origin
COMPONENT Lmon2 = L_monitor(
nL = 50, filename = "Lmon2", xwidth = 0.1, yheight = 0.1,
Lmin = lambda*0.95, Lmax = lambda*1.05)
AT (0, 0, 0.2) RELATIVE mono_out
/* sample =================================================================== */
COMPONENT Sample_mon = Monitor_nD(
bins=20, xwidth = 0.03, yheight = 0.03, options="x y, per cm2")
AT (0, 0, L2-0.05) RELATIVE mono_out
SPLIT COMPONENT SamplePosition = Arm()
AT (0, 0, L2) RELATIVE mono_out
EXTEND %{
flag_env=0;
vix=vx,viy=vy,viz=vz;
%}
COMPONENT cryostat_in = PowderN(radius=0.035, yheight=.1,reflections="Al.laz", thickness=2e-3, concentric=1,p_inc=0.2,p_transmit=0.7)
AT (0, 0, 0) RELATIVE SamplePosition
EXTEND %{
if (SCATTERED) flag_env++;
%}
COMPONENT Sample = Isotropic_Sqw(
Sqw_coh = coh, Sqw_inc = inc, radius = 0.008/2,
yheight = 0.04, p_interact=1, order=1, verbose=0)
AT (0, 0, 0) RELATIVE SamplePosition
EXTEND
%{
if (!SCATTERED) ABSORB; /* TIP: perfect beamstop */
%}
COMPONENT cryostat_out = COPY(cryostat_in)(concentric=0)
AT (0, 0, 0) RELATIVE SamplePosition
EXTEND %{
if (SCATTERED) flag_env++;
RotateNeutron = RAD2DEG*atan2(vx,vz);
%}
/*
COMPONENT BeFilter = Isotropic_Sqw(radius=0.1,yheight=.1,Sqw_coh="Be.laz", p_interact=1)
AT (0, -.1, 0) RELATIVE SamplePosition
EXTEND %{
if (SCATTERED) flag_env++;
%}
*/
/* perfect detector: 1D(theta) */
//COMPONENT Diff_BananaTheta = Monitor_nD(
// options = "sphere, angle limits=[-180 180], bins=360",
// radius = L3, restore_neutron=1)
// AT (0, 0, 0) RELATIVE Sample
///* perfect detector: 2D(theta,y) to see diffraction rings */
//COMPONENT Diff_BananaPSD = Monitor_nD(
// options = "sphere, theta limits=[-180 180] bins=180, phi bins=25 limits=[-90 90]",
// radius = L3*1.005, restore_neutron=1)
// AT (0, 0, 0) RELATIVE Sample
/* The detector is L3 below the sample.
In between, the analyser stands on a barrel with radius 37 cm at center
*/
COMPONENT Barrel_PSD_monitor = Monitor_nD(
options = "banana, theta limits=[-180 180] bins=360, y bins=50",
radius = L3*sin(A5*DEG2RAD)/2, yheight = L3, restore_neutron=1
)
AT (0,-L3/2,0) RELATIVE Sample
COMPONENT Barrel_PSD_monitor2 = COPY(Barrel_PSD_monitor)
(options = "banana, theta limits=[-180 180] bins=360, energy limits=[0 100] bins=50",
restore_neutron=1)
AT (0,-L3/2,0) RELATIVE Sample
/* now we should rotate the neutron by RotateNeutron angle to bring it in the YZ plane */
COMPONENT RotateNeutron = Arm()
AT (0,0,0) RELATIVE Sample
EXTEND %{
/* this code is copied from Rotator.comp which parameters are set static at INIT */
/* here we want a dynamic rotation for every neutron */
Rotation R;
rot_set_rotation(R, 0, RotateNeutron*DEG2RAD, 0); /* will rotate neutron instead of comp: negative side */
/* apply rotation to centered coordinates */
coords_get(rot_apply(R, coords_set(x,y,z)), &x, &y, &z);
/* rotate speed */
coords_get(rot_apply(R, coords_set(vx,vy,vz)), &vx, &vy, &vz);
%}
/* all neutrons are now with x=vx=0 */
COMPONENT Barrel_PSD_monitor3 = Monitor_nD
(xwidth=0.01, yheight=0.669, options = "energy limits=[0 100] bins=100, y bins=20",
restore_neutron=1)
AT (0,-L3/2,L3*sin(A5*DEG2RAD)/2) RELATIVE Sample
/* install the analyser. Reflectivity at Ef=4.5 Kf=1.474 -> R=0.81 */
COMPONENT AnalyserMount = Arm()
AT (0,-L3/2,L3*sin(A5*DEG2RAD)/2) RELATIVE Sample
SPLIT COMPONENT Analyser = Monochromator_curved(
width=.05, height=0.669, RV=RVA, NV=11, NH=1, DM=3.355, reflect="HOPG.rfl")
AT (0,0,0) RELATIVE AnalyserMount
ROTATED (0,90,0) RELATIVE AnalyserMount
GROUP POSTsample
EXTEND %{
if (!SCATTERED) ABSORB; /* perferct beam stop to account for the B4C block */
%}
COMPONENT KillDirectBeam = Arm()
AT (0,0,0) RELATIVE PREVIOUS
GROUP POSTsample
EXTEND %{
// For some reason, the above B4C solution is not enough to block on mcstas-3.0.
// This catchall ensures that there is no communication directly between sample
// and detector.
SCATTER; ABSORB;
%}
COMPONENT DetectorMount = Arm()
AT (0,-L3, 0) RELATIVE Sample
COMPONENT Detector = Monitor_nD(
xwidth=.01, yheight=.1, options="energy limits=[0 100] bins=100, y bins=50", restore_neutron=1)
AT (0, 0, 0) RELATIVE DetectorMount
ROTATED (90, 0, 0) RELATIVE DetectorMount
COMPONENT Detector_Sqw = Sqw_monitor(
vix="vix",viy="viy",viz="viz",filename="Detector_Sqw",qmin=0,qmax=10,Emin=-100,Emax=100,nq=20,nE=100)
AT (0, 0, 0) RELATIVE DetectorMount
ROTATED (90, 0, 0) RELATIVE DetectorMount
COMPONENT Detector_Sqw_env = COPY(PREVIOUS)(filename="Detector_Sqw_env")
WHEN (flag_env)
AT (0, 0, 0) RELATIVE PREVIOUS
END
|