File: ILL_Lagrange.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (284 lines) | stat: -rw-r--r-- 9,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*******************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: ILL_Lagrange
*
* %Identification
* Written by: E. Farhi
* Date: 13 Apr 2006
* Origin: LLB/ILL
* %INSTRUMENT_SITE: ILL
*
* IN1-Lagrange hot neutrons spectrometer for liquids at the ILL.
*
* %Description
* IN1-Lagrange hot neutrons spectrometer for liquids at the ILL.
*
* The dedicated liquid and amorphous instrument Lagrange is a spectrometer with
* constant final neutron energy, and variable incoming neutron energy.
* The analyser is a focusing barrel covered with PG analyser, all focusing to
* the detector. The flux is thus very high, and the resolution is that given
* buy the PG crystal mocaicity.
*
* The monochromator take-off angle is 2Theta_M ~ 20-25 deg, variable. The available
* monochromators are all vertically focusing, Cu (200) for 0.7 Angs, Cu (220)
* for 0.5 Angs.
*
* Cu       002 DM=1.807 AA
* Cu       220 DM=1.278 AA
* PG       002 DM=3.355 AA
*--------------------------
* %Example: lambda=0.897 Detector: Detector_I=3704.83
*
* %Parameters
* lambda: [Angs]  Wavelength at monochromator
* DM: [Angs]      d-spacing of monochromator
* RV: [m]         Monochromator vertical curvature, 0=flat, -1=automatic
* L1: [m]         Source-Monochromator distance
* L2: [m]         Monochromator-Sample distance
* L3: [m]         Sample-Detector distance
* coh: [str]      File name for sample coherent scattering contribution
* inc: [str]      File name for sample incoherent scattering contribution
* verbose: [1]    Print spectrometer configuration. 0 to be quiet
*
* %Link
* The <a href="http://www.ill.eu/d4">D4 diffractometer</a> at the ILL
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ILL_Lagrange(lambda=0.897, DM=1.807, RV=-1, string coh="Rb_liq_coh.sqw", string inc="Rb_liq_inc.sqw", L1=6.35, L2=2.55, L3=0.901, verbose=1)


/* The DECLARE section allows us to declare variables or  small      */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
  double A1,A5; /* rotation of monok and analyser */
  double RVA;   /* focusing of analyser */
%}

USERVARS %{
  double RotateNeutron;
  int flag_env;
  double vix;
  double viy;
  double viz;
%}


INITIALIZE
%{
  double L;
  double KI, Vi, EI;
  double KF, Vf, EF, DA, lambdaF;

  /* incoming beam */
  KI = (2*PI)/lambda;
  A1 =asin(lambda/(2*DM))*RAD2DEG;
  A1 *= -1;
  L = 1/(1/L1+1/L2);
  if (RV < 0) RV=2*L*sin(DEG2RAD*A1);
  Vi = K2V*fabs(KI);
  EI = VS2E*Vi*Vi;

  /* analyser beam */
  DA = 3.355; /* PG002 d-spacing */
  EF = 4.5;
  Vf = sqrt(EF/VS2E);
  KF = Vf*V2K;
  lambdaF = (2*PI)/KF;
  A5 = asin(lambdaF/(2*DA))*RAD2DEG;
  RVA = fabs(L3/2/cos(A5*DEG2RAD));

  /* display information */
  if (verbose) {
    printf("%s: Detailed Lagrange configuration\n", NAME_INSTRUMENT);
    printf("* Incoming beam:  lambda=%.4g [Angs] EI=%.4g [meV]  KI=%.4g [Angs-1] Vi=%g [m/s] \n\n",
      lambda, EI, KI, Vi);
    printf("* Monochromator:  DM=%.4g [Angs] RV=%.4g [m] %s, take-off A1=%.4g [deg]\n",
      DM, RV, (!RV ? "flat" : "curved"), A1);
    printf("* Analyser:       DA=%.4g [Angs] RV=%.4g [m] %s, take-off A5=%.4g [deg]\n",
      DA, RVA, "curved", A5);
    printf("* Outgoing beam:  lambda=%.4g [Angs] EF=%.4g [meV]  KF=%.4g [Angs-1] Vf=%g [m/s] \n",
      lambdaF, EF, KF, Vf);
  }
  RV = -fabs(RV);
%}

TRACE

COMPONENT Origin = Progress_bar()
  AT (0,0,0) ABSOLUTE

/* Hot source at the ILL */
COMPONENT Source = Source_gen(
    xwidth = 0.05, yheight=0.20, dist = L1, focus_xw = fabs(0.18*sin(A1*DEG2RAD)), focus_yh = 0.20,
    lambda0 = lambda, dlambda = lambda*0.03,
    T1=1695,I1=1.74e13,T2=708,I2=3.9e12)
  AT (0, 0, 0) RELATIVE Origin

COMPONENT PSD = PSD_monitor(
     nx = 20, ny = 20, filename = "PSD1", xwidth = 0.03,
     yheight = 0.03)
   AT (0, 0, L1-0.5) RELATIVE Source

/* L_monitor: just sensitive to the neutron wavelength. 1D histogram measured in AA*/
COMPONENT Lmon1 = L_monitor(
    nL = 50, filename = "Lmon1", xwidth = 0.1, yheight = 0.1,
    Lmin = lambda*0.95, Lmax = lambda*1.05)
  AT (0, 0, 0.01) RELATIVE PREVIOUS

/* monochromator cradle ===================================================== */
COMPONENT mono_cradle = Arm()
  AT (0, 0, L1) RELATIVE Origin
  ROTATED (0, A1, 0) RELATIVE Origin

SPLIT COMPONENT Monok = Monochromator_curved(
    width = 0.18, height = 0.2, NH = 1, NV = 7, RV=RV,
    mosaich = 30, mosaicv = 30, DM = DM)
  AT (0, 0, 0) RELATIVE mono_cradle

/* TIP: positioning diffraction direction for monok (order 1) */
COMPONENT mono_out = Arm()
  AT (0, 0, 0) RELATIVE mono_cradle
  ROTATED (0, 2*A1, 0) RELATIVE Origin

 COMPONENT Lmon2 = L_monitor(
     nL = 50, filename = "Lmon2", xwidth = 0.1, yheight = 0.1,
     Lmin = lambda*0.95, Lmax = lambda*1.05)
   AT (0, 0, 0.2) RELATIVE mono_out

/* sample =================================================================== */

COMPONENT Sample_mon = Monitor_nD(
     bins=20, xwidth = 0.03, yheight = 0.03, options="x y, per cm2")
   AT (0, 0, L2-0.05) RELATIVE mono_out

SPLIT COMPONENT SamplePosition = Arm()
  AT (0, 0, L2) RELATIVE mono_out
EXTEND %{
  flag_env=0;
  vix=vx,viy=vy,viz=vz;
%}

COMPONENT cryostat_in = PowderN(radius=0.035, yheight=.1,reflections="Al.laz", thickness=2e-3, concentric=1,p_inc=0.2,p_transmit=0.7)
  AT (0, 0, 0) RELATIVE SamplePosition
  EXTEND %{
  if (SCATTERED) flag_env++;
%}

COMPONENT Sample = Isotropic_Sqw(
    Sqw_coh = coh, Sqw_inc = inc, radius = 0.008/2,
    yheight = 0.04, p_interact=1, order=1, verbose=0)
  AT (0, 0, 0) RELATIVE SamplePosition
EXTEND
%{
  if (!SCATTERED) ABSORB; /* TIP: perfect beamstop */
%}

COMPONENT cryostat_out = COPY(cryostat_in)(concentric=0)
   AT (0, 0, 0) RELATIVE SamplePosition
EXTEND %{
  if (SCATTERED) flag_env++;
  RotateNeutron = RAD2DEG*atan2(vx,vz);
%}

/*
COMPONENT BeFilter = Isotropic_Sqw(radius=0.1,yheight=.1,Sqw_coh="Be.laz", p_interact=1)
   AT (0, -.1, 0) RELATIVE SamplePosition
EXTEND %{
  if (SCATTERED) flag_env++;
%}
*/

/* perfect detector: 1D(theta) */
//COMPONENT Diff_BananaTheta = Monitor_nD(
//    options = "sphere, angle limits=[-180 180], bins=360",
//    radius = L3, restore_neutron=1)
//  AT (0, 0, 0) RELATIVE Sample

///* perfect detector: 2D(theta,y) to see diffraction rings */
//COMPONENT Diff_BananaPSD = Monitor_nD(
//    options = "sphere, theta limits=[-180 180] bins=180, phi bins=25 limits=[-90 90]",
//    radius = L3*1.005, restore_neutron=1)
//  AT (0, 0, 0) RELATIVE Sample

/* The detector is L3 below the sample.
   In between, the analyser stands on a barrel with radius 37 cm at center
 */

COMPONENT Barrel_PSD_monitor = Monitor_nD(
  options = "banana, theta limits=[-180 180] bins=360, y bins=50",
  radius  = L3*sin(A5*DEG2RAD)/2, yheight = L3, restore_neutron=1
  )
  AT (0,-L3/2,0) RELATIVE Sample


COMPONENT Barrel_PSD_monitor2 = COPY(Barrel_PSD_monitor)
  (options = "banana, theta limits=[-180 180] bins=360, energy limits=[0 100] bins=50",
    restore_neutron=1)
  AT (0,-L3/2,0) RELATIVE Sample

/* now we should rotate the neutron by RotateNeutron angle to bring it in the YZ plane */
COMPONENT RotateNeutron = Arm()
  AT (0,0,0) RELATIVE Sample
  EXTEND %{

/* this code is copied from Rotator.comp which parameters are set static at INIT */
/* here we want a dynamic rotation for every neutron */
    Rotation R;
    rot_set_rotation(R, 0, RotateNeutron*DEG2RAD, 0); /* will rotate neutron instead of comp: negative side */
    /* apply rotation to centered coordinates */
    coords_get(rot_apply(R, coords_set(x,y,z)),    &x, &y, &z);
    /* rotate speed */
    coords_get(rot_apply(R, coords_set(vx,vy,vz)), &vx, &vy, &vz);
  %}


/* all neutrons are now with x=vx=0 */
COMPONENT Barrel_PSD_monitor3 = Monitor_nD
  (xwidth=0.01, yheight=0.669, options = "energy limits=[0 100] bins=100, y bins=20",
    restore_neutron=1)
  AT (0,-L3/2,L3*sin(A5*DEG2RAD)/2) RELATIVE Sample

/* install the analyser. Reflectivity at Ef=4.5 Kf=1.474 -> R=0.81 */
COMPONENT AnalyserMount = Arm()
  AT (0,-L3/2,L3*sin(A5*DEG2RAD)/2) RELATIVE Sample

SPLIT COMPONENT Analyser = Monochromator_curved(
  width=.05, height=0.669, RV=RVA, NV=11, NH=1, DM=3.355, reflect="HOPG.rfl")
  AT (0,0,0)       RELATIVE AnalyserMount
  ROTATED (0,90,0) RELATIVE AnalyserMount
GROUP POSTsample
EXTEND %{
    if (!SCATTERED) ABSORB; /* perferct beam stop to account for the B4C block */
%}

COMPONENT KillDirectBeam = Arm()
  AT (0,0,0) RELATIVE PREVIOUS
GROUP POSTsample
EXTEND %{
  // For some reason, the above B4C solution is not enough to block on mcstas-3.0.
  // This catchall ensures that there is no communication directly between sample
  // and detector.
  SCATTER; ABSORB;
%}

COMPONENT DetectorMount = Arm()
  AT (0,-L3, 0) RELATIVE Sample

COMPONENT Detector = Monitor_nD(
  xwidth=.01, yheight=.1, options="energy limits=[0 100] bins=100, y bins=50", restore_neutron=1)
  AT (0, 0, 0)       RELATIVE DetectorMount
  ROTATED (90, 0, 0) RELATIVE DetectorMount

COMPONENT Detector_Sqw = Sqw_monitor(
  vix="vix",viy="viy",viz="viz",filename="Detector_Sqw",qmin=0,qmax=10,Emin=-100,Emax=100,nq=20,nE=100)
  AT (0, 0, 0)       RELATIVE DetectorMount
  ROTATED (90, 0, 0) RELATIVE DetectorMount

COMPONENT Detector_Sqw_env = COPY(PREVIOUS)(filename="Detector_Sqw_env")
WHEN (flag_env)
AT (0, 0, 0)       RELATIVE PREVIOUS

END