1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Instrument: ISIS_Prisma2
*
* %Identification
* Written by: Kristian Nielsen and Mark Hagen
* Date: August 1998.
* Origin: ISIS/Risoe
* %INSTRUMENT_SITE: ISIS
*
* Simple simulation of PRISMA2 with RITA-style analyser backend.
*
* %Description
* Demonstrates how the standard components from the component library
* may be easily modified for special purposes; in this case to have
* the individual analyser blades paint a "color" on the neutrons to
* differentiate them in the detector.
*
* Output is in the file "prisma2.tof". The format is ASCII; each
* line consists of the time-of-flight in microseconds followed by seven
* intensities of neutrons from each individual analyser blade.
*
* %Example: TT=-30 Detector: mon9_I=7.4973e-08
*
* %Parameters
* TT: [deg] Take-off angle at the sample position, aka A4
* PHA: [deg] Analyzer group rotation angle, aka A5
* PHA1: [deg] Analyzer 1 tilt angle
* PHA2: [deg] Analyzer 2 tilt angle
* PHA3: [deg] Analyzer 3 tilt angle
* PHA4: [deg] Analyzer 4 tilt angle
* PHA5: [deg] Analyzer 5 tilt angle
* PHA6: [deg] Analyzer 6 tilt angle
* PHA7: [deg] Analyzer 7 tilt angle
* TTA: [deg] Take-off angle at the analyzer position, aka A6
*
* %Link
* The McStas User manual
* <a href="http://www.isis.rl.ac.uk/excitations/prisma/">PRISMA</a>
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT ISIS_Prisma2(TT=-30,PHA=22,PHA1=-3,PHA2=-2,PHA3=-1, PHA4=0,PHA5=1,PHA6=2,PHA7=3,TTA=4)
DECLARE
%{
/* 30' mosaicity used on analysator */
double prisma_ana_mosaic = 30;
/* Q vector for bragg scattering with monochromator and analysator */
double prisma_ana_q = 1.87325;
double prisma_ana_r0 = 0.6;
double focus_x,focus_z;
double apos1, apos2, apos3, apos4, apos5, apos6, apos7;
%}
USERVARS %{
int neu_color;
%}
INITIALIZE
%{
focus_x = 0.52 * sin(TT*DEG2RAD);
focus_z = 0.52 * cos(TT*DEG2RAD);
/* Rita-style analyser. */
{
double l = 0.0125;
apos1 = -3*l;
apos2 = -2*l;
apos3 = -1*l;
apos4 = 0*l;
apos5 = 1*l;
apos6 = 2*l;
apos7 = 3*l;
}
%}
TRACE
COMPONENT mod = Moderator(
radius = 0.0707,
dist = 9.035,
focus_xw = 0.021,
focus_yh = 0.021,
Emin = 10, Emax = 15,
Ec = 9.0, t0 = 37.15, gamma = 39.1)
AT (0,0,0) ABSOLUTE
/* Use a slit to get the effect of a rectangular source. */
COMPONENT modslit = Slit(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05)
AT(0,0,0.000001) RELATIVE mod
COMPONENT tof_test = TOF_monitor(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
nt = 500, dt = 1,
filename = "prisma2.mon")
AT (0,0,0.005) RELATIVE mod
COMPONENT mon1 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,0.01) RELATIVE mod ROTATED (0,0,0) RELATIVE mod
COMPONENT slit1 = Slit(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05)
AT(0,0,1.7) RELATIVE mod
COMPONENT slit2 = Slit(xmin = -0.02, xmax = 0.02,
ymin = -0.03, ymax = 0.03)
AT(0,0,7) RELATIVE slit1
COMPONENT mon2 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,9) RELATIVE mod
COMPONENT sample = Incoherent(
radius = 0.01,
thickness = 0.00999,
yheight = 0.02,
focus_r = 0.03,
pack = 1,
target_x = focus_x, target_y = 0, target_z = focus_z)
AT (0, 0, 9.035) RELATIVE mod
COMPONENT a2 = Arm() AT (0,0,0) RELATIVE sample ROTATED (0,TT,0) RELATIVE sample
COMPONENT mon3 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,0.39) RELATIVE a2
COMPONENT coll2 = Collimator_linear(xmin = -0.015, xmax = 0.015,
ymin = -0.025, ymax = 0.025,
length = 0.12, divergence = 120)
AT(0,0,0.40) RELATIVE a2
COMPONENT mon4 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,0.521) RELATIVE a2
COMPONENT rita_ana = Arm()
AT(0, 0, 0.58) relative a2 ROTATED (0, PHA, 0) RELATIVE a2
COMPONENT ana1 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos1) RELATIVE rita_ana
ROTATED (0, PHA1, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=1;
%}
COMPONENT ana2 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos2) RELATIVE rita_ana
ROTATED (0, PHA2, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=2;
%}
COMPONENT ana3 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos3) RELATIVE rita_ana
ROTATED (0, PHA3, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=3;
%}
COMPONENT ana4 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos4) RELATIVE rita_ana
ROTATED (0, PHA4, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=4;
%}
COMPONENT ana5 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos5) RELATIVE rita_ana
ROTATED (0, PHA5, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=5;
%}
COMPONENT ana6 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos6) RELATIVE rita_ana
ROTATED (0, PHA6, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=6;
%}
COMPONENT ana7 = Monochromator_flat(
ymin=-0.0375,ymax=0.0375,zmin=-0.006,zmax=0.006,
mosaich=prisma_ana_mosaic,mosaicv=prisma_ana_mosaic,
r0=prisma_ana_r0, Q=prisma_ana_q)
AT (0, 0, apos7) RELATIVE rita_ana
ROTATED (0, PHA7, 0) RELATIVE rita_ana
EXTEND %{
if(SCATTERED) neu_color=7;
%}
COMPONENT a3 = Arm()
AT (0,0,0) relative rita_ana ROTATED (0,TTA,0) RELATIVE a2
COMPONENT mon5 = Monitor(xmin = -0.05, xmax = 0.05, ymin = -0.05, ymax = 0.05)
AT(0,0,0.06) RELATIVE a3
COMPONENT mon6 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,0.161) RELATIVE a3
COMPONENT psd = PSD_monitor(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
nx = 100, ny = 100,
filename = "prisma2.psd")
AT(0,0,0.20) RELATIVE a3
COMPONENT Detector = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
AT (0,0,0.20) RELATIVE a3
COMPONENT Detector1 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==1) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector2 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==2) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector3 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==3) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector4 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==4) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector5 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==5) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector6 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==6) AT (0,0,0.20) RELATIVE a3
COMPONENT Detector7 = Monitor_nD(xmin = -0.05, xmax = 0.05,
ymin = -0.05, ymax = 0.05,
options="t limits=[0 10000] bins=1000",
restore_neutron=1)
WHEN (neu_color==7) AT (0,0,0.20) RELATIVE a3
COMPONENT mon9 = Monitor(xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
AT(0,0,0.01) RELATIVE Detector
END
|