1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2011, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Instrument: RITA-II @ PSI with hkl calculator
*
* %Identification
* Written by: <a href="mailto:udby@fys.ku.dk">Linda Udby</a> and <a href="mailto:pkwi@fysik.dtu.dk">Peter Willendrup</a>
* Date: 2012
* Origin: <a href="http://www.risoe.dk">Risø (Denmark)</a>
* %INSTRUMENT_SITE: PSI
*
* RITA type triple-axis spectrometer (TAS)
*
* %Description
* This instrument is model of RITA-II at the RNR13 guide at SINQ, PSI as of 2009. The energy and q-resolution as been verified against measured data in 2- and 3-axis modes. See Udby et al., Nuclear Instruments and Methods 634 (2011) s138-.<br>
* The model is based on the following components in downstream order
* <ul>
* <li> The SINQ source in 2009 - tested up to Ei=15 meV versus measurements. The spectrum of genereated rays is controlled by the BPL and BPH parameters.</li>
* <li> The RNR13 guide with average m-value based on color-codes on guide pieces and gaps as measured/from technical drawings.</li>
* <li> The Druckal monochromator: 5 slabs of PG(002) with vertically focusing option. The horizontal rotation angle (A1) and scattering angle (A2) can either be set by user input or calculated automatically from EI/KI. </li>
* <li> Optional filter after the monochromator, before the sample. </li>
* <li> Variable linear collimator after the monochromator, before the sample. </li>
* <li> Optional perspex attenuation. </li>
* <li> Inbound Diaphagm slit. </li>
* <li> Sample: Incoherent scatterer, powder or single crystal from reflection list. </li>
* <li> Outbound Diaphragm slit. </li>
* <li> Optional filter after the sample, with radial collimator.</li>
* <li> 9 - blade analyser: Base-rotation (AA5) and individual blade angles (C1-C9) can either be set by user or calculated automatically from EF/KF. </li>
* <li> Coarse collimator: Removes cross-talk by allowing only passage of scattered neutrons from specified blade in each channel.</li>
* <li> Detector: PSD detector with 100% efficiency and specified point-spread function from measurements.</li>
* <li> Windows: Monitors the neutrons in each electronically specified window [XWinMin,XWinMax;YWinMin,YWinMax].</li>
* </ul>
* EXAMPLES
* <ul>
* <li>Generating a virtual source </li>
* mcrun RITA-II.instr -n3e6 BPL=0.97 BPH=1.03 EI=5 EF=5 COLL_MS=40 SAMPLE=1 OUTFILTER=0 REP=10 VIRTUALOUT=1 -d RITA-II_Vsource40 <br>
* <li>Vanadium sample, no filters, seeing 1st-3rd order neutrons </li>
* mcrun RITA-II.instr -n3e6 BPL=0.30 BPH=1.03 EI=5 EF=5 SAMPLE=1 INFILTER=0 OUTFILTER=0 REP=10 -d RITA-II_Vanadium <br>
* <li>Powder sample (default sapphire), simulation 1) through entire instrument or 2)from virtual source 3) in 2-axis mode, with particular slit settings scaling the source yield to 2008 values </li>
* 1) mcrun RITA-II.instr -n3e6 EF=5 EN=0 SAMPLE=2 COLL_MS=40 SAMPLEFILE="Al2O3_sapphire.lau" BARNS=0 SOURCEFILE="RITA-II_Vsource40/Vin_default.dat" REP=10 -d RITA-II_40_powder<br>
* 2) mcrun RITA-II.instr EI=5 EF=5 SAMPLE=2 SAMPLEFILE="Al2O3_sapphire.lau" BARNS=0 SOURCEFILE="RITA-II_Vsource40/Vin_default.dat" VIRTUALIN=1 REP=3 -d RITA-II_VINsource40_powder <br>
* 3) mcrun RITA-II.instr -n 1e7 ITAR=0.71 COLL_MS=19.6 BPL=0.97 BPH=1.03 EI=5 EF=5 QH=0 QK=0 QL=0 QM=1 A3=0.001 A4=-71 AA5=-90 A6=1e-3 MST=25 MSB=25 MSL=10 MSR=10 SAMPLE=2 SAMPLEFILE="Al2O3_sapphire.lau" SST=25 SSB=25 SSL=10 SSR=10 OUTFILTER=0 OUTFILTERFILE=Be.trm COARSE=1 REP=5 LC=6 RC=4 REP=1 BARNS=0 ANAFORCE=1 -d RITA-II_Al2O3_2axis<br>
* <li>Single crystal sample. Define first lattice vector (a) along -x (to the right) , second lattice vector (b) along z (forward), third lattice vector (c) along y (up). </li>
* mcrun RITA-II.instr -n1e6 BPL=0.97 BPH=1.03 EI=5 EF=5 SAMPLE=3 REP=10 QH=2 QM=0 AS=4.95 BS=4.95 CS=4.95 AAX=-4.95 BBZ=4.95 CCY=4.95 AH=0 AK=1 AL=0 BH=1 BK=0 BL=0 SAMPLEFILE="Pb.laz" -d RITA-II_SXPb200 <br>
* <li> Phonon sample, inelastic scattering, no Bragg peaks in sample </li>
* mcrun RITA-II.instr -n1e6 L0=3.418 BPL=0.97 BPH=1.03 EI=7 EF=5 SAMPLE=4 REP=10 QH=2 QK=0.16 QM=0 AS=4.95 BS=4.95 CS=4.95 AAX=-4.95 BBZ=4.95 CCY=4.95 AH=0 AK=1 AL=0 BH=1 BK=0 BL=0 SAMPLEFILE="Pb.laz" -d RITA-II_SXPb200_2meV <br>
* </ul>
* %Parameters
* ITAR: [mA] Relative neutron yield from the spallation target. Value relative to 2009
* EI: [meV] Incoming neutron energy. Also used to set range of energy monitors
* EF: [meV] Outgoing neutron energy. Also used to set range of energy monitors
* QH: [rlu] Measurement QH position in crystal
* QK: [rlu] Measurement QK position in crystal
* QL: [rlu] Measurement QL position in crystal
* EN: [meV] Energy transferred in crystal
* QM: [Angs-1] Wavevector transferred in sample, use QM=0 if (QH,QK,QL) is specified
* A1: [deg] Monohromator rotation angle
* A2: [deg] Monohromator take-off angle
* A3: [deg] Sample rotation angle
* A4: [deg] Sample take-off angle
* AA5: [deg] Analyzer rack rotation angle
* A6: [deg] Analyzer take-off angle
* C1: [deg] Analyzer blade 1 position
* C2: [deg] Analyzer blade 2 position
* C3: [deg] Analyzer blade 3 position
* C4: [deg] Analyzer blade 4 position
* C5: [deg] Analyzer blade 5 position
* C6: [deg] Analyzer blade 6 position
* C7: [deg] Analyzer blade 7 position
* C8: [deg] Analyzer blade 8 position
* C9: [deg] Analyzer blade 9 position
* COLL_MS: [deg] Primary collimator max divergence
* MONO_N: [1] Order of reflection used on mono
* MONOFORCE: [1] If set, monochromator is flat
* L0: [Angs] Centre of generated wavelength distribution from source
* BPL: Band Pass Low factor, multiplied on source wavelength L0 to allow neutrons with wavelengths with lambda {BPL*L0,BPH*L0} to be traced from the source.
* BPH: Band Pass High factor, multiplied on source wavelength L0 to allow neutrons with wavelengths with lambda {BPL*L0,BPH*L0} to be traced from the source.
* MST: [m] Monochromator TOP slit
* MSB: [m] Monochromator BOTTOM slit
* MSR: [m] Monochromator RIGHT slit
* MSL: [m] Monochromator LEFT slit
* SST: [m] Sample TOP slit
* SSB: [m] Sample BOTTOM slit
* SSR: [m] Sample RIGHT slit
* SSL: [m] Sample LEFT slit
* SM: [1]
* SS: [1] Scattering configuration signs. 'W' is SM=1,SS=-1,SA=1
* SA: [1]
* OUTFILTER: [1] Flag to indicate if the outbound filter is in or out
* OUTFILTERFILE: [string] An input file of wavevector vs transmission to use with outgoing filter
* INFILTER: [1] Flag to indicate if mono-block filter is in or out
* INFILTERFILE: [string] An input file of wavevector vs transmission to use with incoming filter
* COARSE: [1] Flag to indicate if Detector collimator is in or out
* REP: [1] Repetition factor of virtual_input or Monochromator/Sample/Analyzer SPLITs
* ANAFORCE: [1] If set the analyzer is forced flat
* MONO_MOS_H: [min] Monochromator, horizontal mosaicity
* MONO_MOS_V: [min] Monochromator, vertical mosaicity
* LC: [deg] Detector-collimator angle of the leftmost blade
* RC: [deg] Detector-collimator angle of the rightmost blade
* PERSPEX: [1] Flag to indicate if perspex attenuator is in or out
* PTHICK: [m] Thickness of perspex attenuator
* VIRTUALOUT: [1] If set, flag indicates that a Virtual source is created after the monochromator collimator
* VIRTUALIN: [1] If set, flag to indicates that Virtual source is used after the monochromator collimator
* SOURCEFILE: [string] Name of file to be used/genereated as virtual input/output
* verbose: [1] print TAS configuration. 0 to be quiet
* SAMPLE: [1] 1 is incoherent scatterer, 2 is powder, 3 is single crystal.
* SAMPLEFILE: [string] Name of samplefile (with reflectionlist etc)
* SAMPLESIZE: [m] Length, height and width of single crystal sample, or radius and height of phonon sample
* MOS: [] Isotropic 'mosaicity' of single crystal
* DD_D: [] spead of lattice parameter
* AS: [Angs] Sample lattice parameter A
* BS: [Angs] Sample lattice parameter B
* CS: [Angs] Sample lattice parameter C
* AA: [deg] Angle between lattice vectors B,C
* BB: [deg] Angle between lattice vectors C,A
* CC: [deg] Angle between lattice vectors A,B
* AH: [rlu] First reciprocal lattice vector in scattering plane, X
* AK: [rlu] First reciprocal lattice vector in scattering plane, Y
* AL: [rlu] First reciprocal lattice vector in scattering plane, Z
* BH: [rlu] Second reciprocal lattice vector in scattering plane, X
* BK: [rlu] Second reciprocal lattice vector in scattering plane, Y
* BL: [rlu] Second reciprocal lattice vector in scattering plane, Z
* AAX: []
* AAY: [] Orientation vector of unit cell, single_crystal
* AAZ: []
* BBX: []
* BBY: [] Orientation vector of unit cell, single_crystal
* BBZ: []
* CCX: []
* CCY: [] Orientation vector of unit cell, single_crystal
* CCZ: []
* TILT: [deg] Tilt angle out of plane of the sample scattering vector out of plane (rotation around z of the A3 arm)
* BARNS: [1] If set the flag indicates that reflection list structure factors are in units of barns, otherwise fm^2
* BPL: []
* BPH: []
* MOS: []
* DD_D: []
* AAX: []
* AAY: []
* AAZ: []
* BBX: []
* BBY: []
* BBZ: []
* CCX: []
* CCY: []
* CCZ: []
*
* %Link
* Rescal for Matlab at http://www.ill.fr/tas/matlab
* %Link
* Restrax at http://omega.ujf.cas.cz/restrax/
* %End
*******************************************************************************/
DEFINE INSTRUMENT RITA_II( ITAR=1.0,L0=4.045,BPL=0.97,BPH=1.03, MONO_N=1,MONOFORCE=0,MONO_MOS_H=37,
MONO_MOS_V=37, EI=0,EF=0,EN=0, SM=1,SS=-1,SA=1, QH=0, QK=0, QL=0, QM=1.8051,
AS=4.95, BS=4.95, CS=4.95, AA=90, BB=90, CC=90, AH=0, AK=1, AL=0, BH=1, BK=0, BL=0,
INFILTER=0, string INFILTERFILE="Be.trm", COLL_MS=80, MST=40, MSB=40, MSL=40, MSR=40,
PTHICK=1e-3,PERSPEX=0, SAMPLE=1, string SAMPLEFILE="default",MOS=100,DD_D=1e-3,
SAMPLESIZE=0.01,BARNS=1,
AAX=-4.95, AAY=0, AAZ=0, BBX=0, BBY=0, BBZ=4.95, CCX=0, CCY=4.95, CCZ=0,
A1=0,A2=0,A3=0,A4=0,A6=0,TILT=0, SST=100, SSB=100, SSL=100, SSR=100,
OUTFILTER=1, string OUTFILTERFILE="Be.trm", ANAFORCE=0,
AA5=0,C1=0,C2=0,C3=0,C4=0,C5=0,C6=0,C7=0,C8=0,C9=0, COARSE=1,LC=4, RC=3, REP=1,
VIRTUALOUT=0, VIRTUALIN=0, string SOURCEFILE="Vin_default.dat",verbose=1 )
DECLARE
%{
/* The following is from RITA2front, Kim Lefmann / Linda Udby */
/* Static values... */
double l0,lmin,lmax;
double emini,emaxi;
double eminf,emaxf;
double nefchan;
double neichan;
double lI,KI,KF;
/* Internal variable for SPLIT repetitions */
int SPLITREP;
int SPLITMREP;
int SPLITAREP;
#pragma acc declare create (SPLITREP,SPLITMREP,SPLITAREP)
/* Guide element parameters*/
double angleGuideCurved;
double R = 0.88;
double R0 = 0.995;
double Qc = 0.0217;
double W = 0;
double M= 2.15;
double ALPHA;
/* Monochromator material parameters */
double mono_q = 1.87325;
double mono_r0 = 0.8;
double DM; /*d-spacing monochromator*/
double mono_mosaic_h;
double mono_mosaic_v;
/* Monochromator curvature parmeters */
//double u,v;
double dms; /* Target vector for focusing */
double tx,tz; /* Target vector for focusing */
double sintm,sinta;
double rv; /* Mono focusing parameter */
/* Monochromator geometrical parameters */
/* Size of monochromator blades are hard-coded in the component*/
double mono_d = 0.026; /* Distance between mono blades. From drawings */
double dmc; /* Distance monochromator to front of collimator. Was 0.32 from Stine */
double rmh = 0.58; /* Radius of monohousing. Measured 2008/11/05 */
double lc = 0.198; /*Length of monocollimator. Measured 2008/11/05*/
/* RITA Monitor efficiency 1.7e-5 */
double EFF = 1.7e-5;
/* Sample parameters */
double d_sample_slit = 0.35; /* Measured 2008/11/05, was 25 cm from Stine */
double d_sample_filter = 0.51; /*To centre of filter. Measured 2008/11/05, was to filter front 25 cm from Stine */
double dsa = 1.195; /* distance sample-analyzer (m). Was 1.256 from Stine */
double dsb ; /*distance sample to blade, depends on analyser rack postion*/
double dmv = 1.00; /* distance monochromator to virtual out */
//double dvs = 0.67; /* distance virtual in to sample. dmv+dvs=1.67=rmh+1.09. Ma15 setting */
double dvs = 0.54; /* distance virtual in to sample. dmv+dvs=1.54 */
double is_incoh;/* Random number pr. neutron event for incoherent V scattering */
/* Filenames for the sample comps: */
char *PowderFile;
char *SingleXFile;
/* Analyser material parameters*/
double ana_mosaic_h;
double ana_mosaic_v;
double ana_q = 1.87325;
double ana_r0 = 0.8;
double DA; /* d-spacing analyser*/
/*Analyser geometrical parameters */
double ana_d = 0.025; /* Width of analyser blades. From drawings */
double ana_h = 0.15; /* Height of analyser blades. From drawings */
double dad = 0.338; /* distance analyzer to detector front (m) */
double dadw = 0.3595; //= 0.3595; /* distance analyzer to detector wire (m) */
double wan = 0.024; /* width of analyzer blades , by ruler (m) */
double RR; // = 0.3008; /* ratio of dadw and dsa*/
//double DA4; /*angle between blades*/
double A5; /* scattering angle for flat analyser*/
/* Declarations for 'Coarse Collimator' at the PSD detector surface */
int EntrySlit;
int ExitSlit;
double BladeThickness = 0.007;// detector coll after 2006, from drawings
double WindowSize = 0.025;
double BladeLength = 0.179;// detector coll after 2006, from drawings
double BladeHeight = 0.272;// detector coll after 2006, from drawings
//double BladeThickness = 0.002;// detector coll before 2006
//double BladeLength = 0.180;// detector coll before 2006
//double BladeHeight = 0.250;// detector coll before 2006
double FirstWindowSizeL;
double FirstWindowSizeR;
double deltaL;
int coarse;
/* Detector parameters */
//double det_width = 0.2735;/* was 0.3 from Stine*/
double det_width = 0.275;
double det_height =0.5;
double PSF = 0.0074/2.35;// FWHM=0.0074m, measured by C. Bahl NIMB 246, 452.
/* Electronic Window positions in the PSD */
int XwinMin[9];
int YwinMin[9];
int XwinMax[9];
int YwinMax[9];
#pragma acc declare create (XwinMin,YwinMin,XwinMax,YwinMax)
/* BEGIN declaring stuff for the HKL calculator adapted from templateTAS */
struct sample_struct {
double as, bs, cs; // Lattice parameters
double aa, bb, cc; // Lattice angles
double ax, ay, az; // First scattering plane vector
double bx, by, bz; // Second scattering plane vector
} sample;
struct machine_hkl_struct {
double dm, da; // Mono and ana d-spacings
double sm, ss, sa; // Mono, sample, ana angle signs
double ki, kf, ei, ef; // Initial and Final wavevectors and energies
double qh, qk, ql, en; // Momentum transfer and energy transfer in sample
} machine_hkl;
struct machine_real_struct {
double a1,a2,a3,a4,a5,a6;
double da4,aa5;
double c1,c2,c3,c4,c5,c6,c7,c8,c9;
double rmh, rmv, rah, rav;
double qm, qs, qt[3];
char message[256];
} machine_real;
struct machine_real_struct qhkl2angles(
struct sample_struct sample,
struct machine_hkl_struct machine_hkl,
struct machine_real_struct machine_real) {
/* code from TASMAD/t_rlp.F:SETRLP */
double qhkl[3];
double alpha[3];
double a[3];
double aspv[3][2];
double cosa[3], sina[3];
double cosb[3], sinb[3];
double b[3], c[3], s[4][4];
double vv[3][3], bb[3][3];
double arg, cc;
int i,j,k,l,m,n;
char liquid_case=1;
/* transfered parameters to local arrays */
qhkl[0] = machine_hkl.qh; /* HKL target */
qhkl[1] = machine_hkl.qk;
qhkl[2] = machine_hkl.ql;
alpha[0] = sample.aa; /* cell angles */
alpha[1] = sample.bb;
alpha[2] = sample.cc;
a[0] = sample.as; /* cell parameters */
a[1] = sample.bs;
a[2] = sample.cs;
aspv[0][0]= sample.ax; /* cell axis A */
aspv[1][0]= sample.ay;
aspv[2][0]= sample.az;
aspv[0][1]= sample.bx; /* cell axis B */
aspv[1][1]= sample.by;
aspv[2][1]= sample.bz;
/* default return values */
strcpy(machine_real.message, "");
machine_real.a3 = machine_real.a4 = 0;
machine_real.a1 = machine_real.a5 = 0;
/* if using HKL positioning in crystal (QM = 0) */
if (machine_real.qm <= 0) {
liquid_case = 0;
/* compute reciprocal cell */
for (i=0; i< 3; i++)
if (a[i] <=0) sprintf(machine_real.message, "Lattice parameters a[%i]=%g", i, a[i]);
else {
a[i] /= 2*PI;
alpha[i]*= DEG2RAD;
cosa[i] = cos(alpha[i]);
sina[i] = sin(alpha[i]);
}
cc = cosa[0]*cosa[0]+cosa[1]*cosa[1]+cosa[2]*cosa[2]; /* nprm */
cc = 1 + 2*cosa[0]*cosa[1]*cosa[2] - cc;
if (cc <= 0) sprintf(machine_real.message, "Lattice angles (AA,BB,CC) cc=%g", cc);
else cc = sqrt(cc);
if (strlen(machine_real.message)) return machine_real;
/* compute bb */
j=1; k=2;
for (i=0; i<3; i++) {
b[i] = sina[i]/(a[i]*cc);
cosb[i] = (cosa[j]*cosa[k] - cosa[i])/(sina[j]*sina[k]);
sinb[i] = sqrt(1 - cosb[i]*cosb[i]);
j=k; k=i;
}
bb[0][0] = b[0];
bb[1][0] = 0;
bb[2][0] = 0;
bb[0][1] = b[1]*cosb[2];
bb[1][1] = b[1]*sinb[2];
bb[2][1] = 0;
bb[0][2] = b[2]*cosb[1];
bb[1][2] =-b[2]*sinb[1]*cosa[0];
bb[2][2] = 1/a[2];
/* compute vv */
for (k=0; k< 3; k++)
for (i=0; i< 3; i++) vv[k][i] = 0;
for (k=0; k< 2; k++)
for (i=0; i< 3; i++)
for (j=0; j< 3; j++)
vv[k][i] += bb[i][j]*aspv[j][k];
for (m=2; m>=1; m--)
for (n=0; n<3; n++) {
i = (int)fmod(m+1,3); j= (int)fmod(m+2,3);
k = (int)fmod(n+1,3); l= (int)fmod(n+2,3);
vv[m][n]=vv[i][k]*vv[j][l]-vv[i][l]*vv[j][k];
}
for (i=0; i< 3; i++) { /* compute norm(vv) */
c[i]=0;
for (j=0; j< 3; j++)
c[i] += vv[i][j]*vv[i][j];
if (c[i]>0) c[i] = sqrt(c[i]);
else {
sprintf(machine_real.message, "Vectors A and B, c[%i]=%g", i, c[i]);
return machine_real;
}
}
for (i=0; i< 3; i++) /* normalize vv */
for (j=0; j< 3; j++)
vv[j][i] /= c[j];
for (i=0; i< 3; i++) /* compute S */
for (j=0; j< 3; j++) {
s[i][j] = 0;
for (k=0; k< 3; k++)
s[i][j] += vv[i][k]*bb[k][j];
}
s[3][3]=1;
for (i=0; i< 3; i++) s[3][i]=s[i][3]=0;
/* compute q modulus and transverse component */
machine_real.qs = 0;
for (i=0; i< 3; i++) {
machine_real.qt[i] = 0;
for (j=0; j< 3; j++) machine_real.qt[i] += qhkl[j]*s[i][j];
machine_real.qs += machine_real.qt[i]*machine_real.qt[i];
}
if (machine_real.qs > 0) machine_real.qm = sqrt(machine_real.qs);
else sprintf(machine_real.message, "Q modulus too small QM^2=%g", machine_real.qs);
} else {
machine_real.qs = machine_real.qm*machine_real.qm;
}
/* end if qm <= 0 ********************************************* */
/* positioning of monochromator and analyser */
arg = PI/machine_hkl.dm/machine_hkl.ki;
if (fabs(arg > 1))
sprintf(machine_real.message, "Monochromator can not reach this KI. arg=%g", arg);
else {
if (machine_hkl.dm <= 0 || machine_hkl.ki <= 0)
strcpy(machine_real.message, "Monochromator DM=0 or KI=0.");
else
machine_real.a1 = asin(arg)*RAD2DEG;
machine_real.a1 *= machine_hkl.sm;
}
machine_real.a2=2*machine_real.a1;
arg = PI/machine_hkl.da/machine_hkl.kf;
if (fabs(arg > 1))
sprintf(machine_real.message, "Analyzer can not reach this KF. arg=%g",arg);
else {
if (machine_hkl.da <= 0 || machine_hkl.kf <= 0)
strcpy(machine_real.message, "Analyzer DA=0 or KF=0.");
else
machine_real.a5 = asin(arg)*RAD2DEG;
machine_real.a5 *= machine_hkl.sa;
}
machine_real.a6=2*machine_real.a5;
if (strlen(machine_real.message)) return machine_real;
/* code from TASMAD/t_conv.F:SAM_CASE */
arg = (machine_hkl.ki*machine_hkl.ki + machine_hkl.kf*machine_hkl.kf - machine_real.qs)
/ (2*machine_hkl.ki*machine_hkl.kf);
if (fabs(arg) < 1)
machine_real.a4 = RAD2DEG*acos(arg);
else
sprintf(machine_real.message, "Q modulus too big. Can not close triangle. arg=%g", arg);
machine_real.a4 *= machine_hkl.ss;
if (!liquid_case) { /* compute a3 in crystals */
machine_real.a3 =
-atan2(machine_real.qt[1],machine_real.qt[0])
-acos( (machine_hkl.kf*machine_hkl.kf-machine_real.qs-machine_hkl.ki*machine_hkl.ki)
/(-2*machine_real.qm*machine_hkl.ki) );
machine_real.a3 *= RAD2DEG*(machine_real.a4 > 0 ? 1 : -1 );
//machine_real.a3 = machine_real.a3 -90;// Add by PW & LU
}
/* Analyser angles */
/* Angle of the analyser rack aa5 */
RR = dadw/dsa;
machine_real.aa5 = -RAD2DEG*(acos((sin(DEG2RAD*machine_real.a6)-(cos(DEG2RAD*machine_real.a6)+RR)*sqrt(RR*RR+2*RR*cos(DEG2RAD*machine_real.a6)))/(1+RR*RR+2*RR*cos(DEG2RAD*machine_real.a6)))); // From Bahl et al. , NIMB 226 (2004)
/*printf("(RITA Analyzer Rack Angle: AA5=%.4g[deg])\n", machine_real.aa5);*/
/*A4 angle between blades */
dsb = sqrt(dsa*dsa + ana_d*ana_d - 2*dsa*ana_d*cos(DEG2RAD*machine_real.aa5));
machine_real.da4 = RAD2DEG*asin(ana_d*sin(DEG2RAD*abs(machine_real.aa5))/dsb);
//machine_real.da4 = RAD2DEG*atan(ana_d*cos(DEG2RAD*machine_real.aa5)/dsa);
printf("(RITA Analyzer Angle between blades: DA4=%.4g[deg])\n", machine_real.da4);
/*Blade angle rotation */
machine_real.c1= -machine_real.aa5+machine_real.a5-(1-5)*machine_real.da4;
machine_real.c2= -machine_real.aa5+machine_real.a5-(2-5)*machine_real.da4;
machine_real.c3= -machine_real.aa5+machine_real.a5-(3-5)*machine_real.da4;
machine_real.c4= -machine_real.aa5+machine_real.a5-(4-5)*machine_real.da4;
machine_real.c5= -machine_real.aa5+machine_real.a5-(5-5)*machine_real.da4;
machine_real.c6= -machine_real.aa5+machine_real.a5-(6-5)*machine_real.da4;
machine_real.c7= -machine_real.aa5+machine_real.a5-(7-5)*machine_real.da4;
machine_real.c8= -machine_real.aa5+machine_real.a5-(8-5)*machine_real.da4;
machine_real.c9= -machine_real.aa5+machine_real.a5-(9-5)*machine_real.da4;
return machine_real;
}
/* END declaring stuff for the HKL calculator adapted from templateTAS */
%}
/* end of DECLARE */
USERVARS
%{
/* Order of scattering from the monochromator */
double Mono_order;
int AnaBlade;
int BinX;
int BinY;
%}
INITIALIZE %{
/* Source parameters */
//l0=9.045/sqrt(EI);
l0=L0;// fix 20100222 by LU since we want source independent of mono
lmin=BPL*l0;/* MONO_N is the order of the reflection */
lmax=BPH*l0;
printf("Source wavelength interval=%.4g - %.4g[Ang] \n",lmin, lmax);
/* Calculate min and max energy for source to use with energy monitors before sample */
emini=(9.045*9.045)/(lmax*lmax);
emaxi=(9.045*9.045)/(lmin*lmin);
//neichan=floor((emaxi-emini)/0.01);
printf("Source energy interval=%.4g - %.4g[meV] \n",emini, emaxi);
/* Calculate min and max energy for the detectors after the sample */
eminf=EF*0.95;
emaxf=EF*1.05;
//nefchan=floor((emaxf-eminf)/0.005);
printf("Detector energy interval=%.4g - %.4g[meV] \n",eminf, emaxf);
/* Only SPLIT if we are not running with VIRTUAL parms */
if (VIRTUALIN || VIRTUALOUT) {
SPLITREP = 1;
if (!VIRTUALOUT){
SPLITMREP = 1;
}else{
SPLITMREP = REP;
}
if (!VIRTUALIN){
SPLITAREP = 1;
}else{
SPLITAREP = REP;
}
} else {
SPLITREP = REP;
SPLITMREP = REP;
SPLITAREP = REP;
}
/* Guide parameters */
angleGuideCurved=20.0/2408.0;
/* calculate mirror reflectivity slope */
ALPHA=0;//(R0-R)/(Qc*(M-1));
printf("* GUIDE MIRROR ALPHA=%g [AA]\n", ALPHA);
/* Monochromator parameters */
double Vi, Vf;
double tmp=0;
char Qmode = 0;
DM = 2*PI/mono_q;
DA = 2*PI/ana_q;
mono_mosaic_h = MONO_MOS_H; /* MON_MOSAIC; */
mono_mosaic_v = MONO_MOS_V; /* MON_MOSAIC; */
dms = dmv+dvs;/* Distance between mono and sample*/
dmc = rmh-lc; /*distance monochromator to front of monocollimator*/
/* fix 08/02/2009 by LU */
/* Forcing monochromator to set value */
if (MONOFORCE) {/* Flat mono */
rv=0;
printf("* MONOCHROMATOR IS VERTICALLY FOCUSING: RV=%g \n",rv);
}
else {rv=dms; /* curved mono */
printf("* MONOCHROMATOR IS FLAT: RV=%g \n", rv);
}
/* BEGIN HKL calculator adapted from templateTAS */
machine_real.a1 = A1;
machine_real.a2 = A2;
machine_real.a3 = A3;
machine_real.a4 = A4;
machine_real.a5 = A5;
machine_real.a6 = A6;
machine_real.c1 = -C1;
machine_real.c2 = -C2;
machine_real.c3 = -C3;
machine_real.c4 = -C4;
machine_real.c5 = -C5;
machine_real.c6 = -C6;
machine_real.c7 = -C7;
machine_real.c8 = -C8;
machine_real.c9 = -C9;
/* energy conservation */
if (EI && EF) {
EN = EI - EF;
fprintf(stderr,"%s WARNING: EN is now set to %g since you provided both EI=%g (KI) and EF=%g (KF)\n", NAME_INSTRUMENT, EN, EI, EF);
} else if (EI && !EF){
EF = EI - EN;
fprintf(stderr,"%s WARNING: EF is now set to %g since you provided both EI=%g (KI) and EN=%g\n", NAME_INSTRUMENT, EF, EI, EN);
fprintf(stderr,"%s POSSIBLE ERROR: On RITA, EF is normally SET, EI calculated - are you sure about this?\n", NAME_INSTRUMENT);
} else if (EF && !EI) {
EI = EF + EN;
fprintf(stderr,"%s WARNING: EI is now set to %g since you provided both EF=%g (KF) and EN=%g\n", NAME_INSTRUMENT, EI, EF, EN);
} else {
fprintf(stderr,"%s WARNING: Neither EI, EF nor EN defined: Energies are set from user angle input:\n", NAME_INSTRUMENT);
l0 = 2 * DM * sin(DEG2RAD*A2/2)/MONO_N;
EI = 9.045/l0;
EI = EI*EI;
fprintf(stderr,"%s: WARNING: EI has been adjusted to %g[meV] (A2 = %g[deg])\n", NAME_INSTRUMENT, EI, A2);
l0 = 2 * DA * sin(DEG2RAD*A6/2)/MONO_N;
EF= 9.045/l0;
EF = EF*EF;
fprintf(stderr,"%s: WARNING: EF has been adjusted to %g[meV] (A6 = %g[deg])\n", NAME_INSTRUMENT, EF, A2);
}
/* determine remaining neutron energies */
Vi = SE2V*sqrt(EI);
KI = V2K*Vi;
Vf = SE2V*sqrt(EF);
KF = V2K*Vf;
/* transfered sample parameters */
sample.aa = AA;
sample.bb = BB;
sample.cc = CC;
sample.as = AS;
sample.bs = BS;
sample.cs = CS;
sample.ax = AH;
sample.ay = AK;
sample.az = AL;
sample.bx = BH;
sample.by = BK;
sample.bz = BL;
/* transfered target parameters */
machine_hkl.ki = KI;
machine_hkl.kf = KF;
machine_hkl.ei = EI;
machine_hkl.ef = EF;
machine_hkl.qh = QH;
machine_hkl.qk = QK;
machine_hkl.ql = QL;
machine_hkl.en = EN;
machine_real.qm = QM;
if (QM || QH || QK || QL) {
Qmode=1;
fprintf(stderr,"%s: Running in HKL mode\n", NAME_INSTRUMENT);
} else {
fprintf(stderr,"%s: Running in angle mode\n", NAME_INSTRUMENT);
}
if (verbose && Qmode) {
printf("%s: Detailed TAS configuration\n", NAME_INSTRUMENT);
printf("* Incoming beam: EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s]\n", EI, KI, Vi);
printf("* Outgoing beam: EF=%.4g [meV] KF=%.4g [Angs-1] Vf=%g [m/s]\n", EF, KF, Vf);
}
/* transfered machine parameters */
/* For W configuartion of TAS: */
machine_hkl.sm = SM;
machine_hkl.ss = SS;
machine_hkl.sa = SA;
/* These two are actually constants, see top of INITIALIZE */
machine_hkl.dm = DM;
machine_hkl.da = DA;
if (Qmode) {
machine_real = qhkl2angles(sample, machine_hkl, machine_real);
if (strlen(machine_real.message)) {
exit(fprintf(stderr, "%s: ERROR: %s [qhkl2angles]\n", NAME_INSTRUMENT, machine_real.message));
}
}
if (A1 && (machine_real.a1 != A1)) {
printf("Warning, resetting A1 from calculated %g to user provided %g\n",machine_real.a1,A1);
machine_real.a1 = A1;
}
if (A2 && (machine_real.a2 != A2)) {
printf("Warning, resetting A2 from calculated %g to user provided %g\n",machine_real.a2,A2);
machine_real.a2 = A2;
}
if (A3 && (machine_real.a3 != A3)) {
printf("Warning, resetting A3 from calculated %g to user provided %g\n",machine_real.a3,A3);
machine_real.a3 = A3;
}
if (A4 && (machine_real.a4 != A4)) {
printf("Warning, resetting A4 from calculated %g to user provided %g\n",machine_real.a4,A4);
machine_real.a4 = A4;
}
if (A5 && (machine_real.a5 != A5)) {
printf("Warning, resetting A5 from calculated %g to user provided %g\n",machine_real.a5,A5);
machine_real.a5 = A5;
}
if (A6 && (machine_real.a6 != A6)) {
printf("Warning, resetting A6 from calculated %g to user provided %g\n",machine_real.a6,A6);
machine_real.a6 = A6;
}
if (AA5 && (machine_real.aa5 != AA5) && !ANAFORCE) {
printf("Warning, resetting AA5 from calculated %g to user provided %g\n",machine_real.aa5,AA5);
machine_real.aa5 = AA5;
/*A4 angle between blades */
machine_real.da4 = RAD2DEG*atan(ana_d*cos(DEG2RAD*machine_real.aa5)/dsa);
/*Blade angle rotation */
machine_real.c1= -machine_real.aa5+machine_real.a5-(1-5)*machine_real.da4;
machine_real.c2= -machine_real.aa5+machine_real.a5-(2-5)*machine_real.da4;
machine_real.c3= -machine_real.aa5+machine_real.a5-(3-5)*machine_real.da4;
machine_real.c4= -machine_real.aa5+machine_real.a5-(4-5)*machine_real.da4;
machine_real.c5= -machine_real.aa5+machine_real.a5-(5-5)*machine_real.da4;
machine_real.c6= -machine_real.aa5+machine_real.a5-(6-5)*machine_real.da4;
machine_real.c7= -machine_real.aa5+machine_real.a5-(7-5)*machine_real.da4;
machine_real.c8= -machine_real.aa5+machine_real.a5-(8-5)*machine_real.da4;
machine_real.c9= -machine_real.aa5+machine_real.a5-(9-5)*machine_real.da4;
printf("Warning, recalculating C's to %g %g %g %g %g %g %g %g %g \n",machine_real.c1,machine_real.c2,machine_real.c3,machine_real.c4,machine_real.c5,machine_real.c6,machine_real.c7,machine_real.c8,machine_real.c9);
}
if (C1 && (machine_real.c1 != -C1)) {
printf("Warning, resetting C1 from calculated %g to user provided %g\n",machine_real.c1,-C1);
machine_real.c1 = -C1;
}
if (C2 && (machine_real.c2 != -C2)) {
printf("Warning, resetting C2 from calculated %g to user provided %g\n",machine_real.c2,-C2);
machine_real.c2 = -C2;
}
if (C3 && (machine_real.c3 != -C3)) {
printf("Warning, resetting C3 from calculated %g to user provided %g\n",machine_real.c3,-C3);
machine_real.c3 = -C3;
}
if (C4 && (machine_real.c4 != -C4)) {
printf("Warning, resetting C4 from calculated %g to user provided %g\n",machine_real.c4,-C4);
machine_real.c4 = -C4;
}
if (C5 && (machine_real.c5 != -C5)) {
printf("Warning, resetting C5 from calculated %g to user provided %g\n",machine_real.c5,-C5);
machine_real.c5 = -C5;
}
if (C6 && (machine_real.c6 != -C6)) {
printf("Warning, resetting C6 from calculated %g to user provided %g\n",machine_real.c6,-C6);
machine_real.c6 = -C6;
}
if (C7 && (machine_real.c7 != -C7)) {
printf("Warning, resetting C7 from calculated %g to user provided %g\n",machine_real.c7,-C7);
machine_real.c7 = -C7;
}
if (C8 && (machine_real.c8 != -C8)) {
printf("Warning, resetting C8 from calculated %g to user provided %g\n",machine_real.c8,-C8);
machine_real.c8 = -C8;
}
if (C9 && (machine_real.c9 != -C9)) {
printf("Warning, resetting C9 from calculated %g to user provided %g\n",machine_real.c9,-C9);
machine_real.c9 = -C9;
}
/* Forcing ana to set value */
if (ANAFORCE) {/* Flat ana mode */
if (AA5 && machine_real.a5 != AA5){
machine_real.aa5=AA5;
printf("Warning, resetting AA5 from calculated %g to user provided %g\n",machine_real.a5,AA5);
} else{
machine_real.aa5=machine_real.a5;
}
machine_real.c1=0;
machine_real.c2=0;
machine_real.c3=0;
machine_real.c4=0;
machine_real.c5=0;
machine_real.c6=0;
machine_real.c7=0;
machine_real.c8=0;
machine_real.c9=0;
C1 = machine_real.c1;
C2 = machine_real.c2;
C3 = machine_real.c3;
C4 = machine_real.c4;
C5 = machine_real.c5;
C6 = machine_real.c6;
C7 = machine_real.c7;
C8 = machine_real.c8;
C9 = machine_real.c9;
printf("* ANALYSER IN FLAT MODE \n");
}
else {/* else imaging mode ana */
printf("* ANALYSER IN IMAGING MODE \n");
}
if (verbose) {
printf("* Transfered: EN=%g [meV] QM=%g [Angs-1]\n", EN, machine_real.qm);
printf("Angles: A1=%.4g A2=%.4g A3=%.4g A4=%.4g A5=%.4g A6=%.4g [deg]\n",
machine_real.a1, machine_real.a2,
machine_real.a3, machine_real.a4,
machine_real.a5, machine_real.a6);
printf("(RITA Analyzer Angles: AA5=%.4g C1=%.4g C2=%.4g C3=%.4g C4=%.4g C5=%.4g C6=%.4g C7=%.4g C8=%.4g C9=%.4g [deg])\n",
machine_real.aa5,
machine_real.c1,machine_real.c2,machine_real.c3,
machine_real.c4,machine_real.c5,machine_real.c6,
machine_real.c7,machine_real.c8,machine_real.c9);
}
/* END HKL calculator adapted from templateTAS */
/* Sample paramaters */
if (SAMPLE == 2){
/* Powder sample, relevant WHEN at sample position */
if (!strcmp(SAMPLEFILE,"default")) {
PowderFile="Al2O3_sapphire.lau";
} else {
PowderFile=SAMPLEFILE;
}
SingleXFile="";
} else if (SAMPLE == 3) {
/* Single crystal sample, relevant WHEN at sample position */
if (!strcmp(SAMPLEFILE,"default")) {
SingleXFile="Pb.laz";
} else {
SingleXFile=SAMPLEFILE;
}
PowderFile="";
} else if (SAMPLE==4){
/* Phonon sample */
printf("Phonon sample used - no elastic contribution. \n");
}else {
/* Purely incoherent scatterer, relevant WHEN at sample position */
SingleXFile="";
PowderFile="";
}
/* Coarse collimator */
if (COARSE) {coarse = 1;}
else {coarse = 0;}
/* Opening slits of coarse collimator depends on analyzer settings: */
deltaL = 2 * WindowSize * cos(DEG2RAD*machine_real.a6 + fabs(DEG2RAD*machine_real.a5));
FirstWindowSizeL = WindowSize * (dad-BladeLength-deltaL+BladeLength*sin(DEG2RAD*machine_real.a6 + fabs(DEG2RAD*machine_real.a5)))/(dad-deltaL);
FirstWindowSizeR = WindowSize * (dad-BladeLength+deltaL+BladeLength*sin(DEG2RAD*machine_real.a6 + fabs(DEG2RAD*machine_real.a5)))/(dad+deltaL);
/* Window positions */
XwinMin[0] = 0;
XwinMin[1] = 12;
XwinMin[2] = 24;
XwinMin[3] = 36;
XwinMin[4] = 48;
XwinMin[5] = 60;
XwinMin[6] = 72;
XwinMin[7] = 84;
XwinMin[8] = 95;
XwinMin[9] = 106;
XwinMax[0] = 0;
XwinMax[1] = 21;
XwinMax[2] = 33;
XwinMax[3] = 45;
XwinMax[4] = 57;
XwinMax[5] = 69;
XwinMax[6] = 81;
XwinMax[7] = 93;
XwinMax[8] = 104;
XwinMax[9] = 115;
YwinMin[0] = 0;
YwinMin[1] = 39;
YwinMin[2] = 39;
YwinMin[3] = 39;
YwinMin[4] = 39;
YwinMin[5] = 39;
YwinMin[6] = 39;
YwinMin[7] = 39;
YwinMin[8] = 39;
YwinMin[9] = 39;
YwinMax[0] = 0;
YwinMax[1] = 91;
YwinMax[2] = 91;
YwinMax[3] = 91;
YwinMax[4] = 91;
YwinMax[5] = 91;
YwinMax[6] = 91;
YwinMax[7] = 91;
YwinMax[8] = 91;
YwinMax[9] = 91;
%}
/* end of INITIALIZE */
TRACE
/* Source description */
COMPONENT armSource = Progress_bar()
AT (0,0,0) ABSOLUTE
COMPONENT source = Source_gen4 (
h = 0.135, w = 0.08, xw = 0.03, yh = 0.12,
dist = 1.465, Lmin=lmin, Lmax=lmax, /*Lmin=0.1 LMax=10*/
T1=301.287, I1=ITAR*(1.27e13/4/PI),
T2=105.655,I2=ITAR*(3.818e12/4/PI),
T3=25.379,I3=ITAR*(2.331e12/4/PI),
HEtailA=ITAR*8.306e11/4/PI, HEtailL0=-0.398)
WHEN (!VIRTUALIN) AT (0,0,0) RELATIVE armSource ROTATED (0,0,0) RELATIVE armSource
COMPONENT slitGuideBegin = Slit(
xmin = -0.015, xmax = 0.015,
ymin = -0.06, ymax = 0.06)
WHEN (!VIRTUALIN) AT (0,0,1.464999) RELATIVE armSource
COMPONENT lmon_guide_start = L_monitor(
nL = 100, filename = "lmon_guide_start.dat", xmin = -0.02, xmax = 0.02,
ymin = -0.075, ymax = 0.075, Lmin = lmin, Lmax = lmax, restore_neutron = 1)
WHEN (!VIRTUALIN) AT (0, 0, 1.4649992 ) RELATIVE armSource
COMPONENT guideStraight = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 4.628,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 1.465) RELATIVE armSource
/* 0.035m gap*/
COMPONENT guideCurved1 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 4.663) RELATIVE guideStraight
ROTATED (0,angleGuideCurved,0) RELATIVE guideStraight
COMPONENT guideCurved2 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved1
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved1
COMPONENT guideCurved3 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved2
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved2
COMPONENT guideCurved4 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved3
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved3
COMPONENT guideCurved5 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved4
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved4
COMPONENT guideCurved6 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved5
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved5
COMPONENT guideCurved7 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved6
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved6
COMPONENT guideCurved8 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved7
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved7
COMPONENT guideCurved9 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved8
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved8
COMPONENT guideCurved10 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved9
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved9
COMPONENT guideCurved11 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved10
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved10
COMPONENT guideCurved12 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved11
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved11
COMPONENT guideCurved13 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved12
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved12
COMPONENT guideCurved14 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved13
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved13
COMPONENT guideCurved15 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved14
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved14
COMPONENT guideCurved16 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved15
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved15
COMPONENT guideCurved17 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved16
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved16
COMPONENT guideCurved18 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved17
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved17
COMPONENT guideCurved19 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved18
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved18
COMPONENT guideCurved20 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved19
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved19
COMPONENT guideCurved21 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved20
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved20
COMPONENT guideCurved22 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved21
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved21
COMPONENT guideCurved23 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved22
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved22
COMPONENT guideCurved24 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved23
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved23
COMPONENT guideCurved25 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved24
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved24
COMPONENT guideCurved26 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved25
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved25
COMPONENT guideCurved27 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved26
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved26
COMPONENT guideCurved28 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved27
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved27
COMPONENT guideCurved29 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved28
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved28
COMPONENT guideCurved30 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved29
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved29
COMPONENT guideCurved31 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved30
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved30
COMPONENT guideCurved32 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved31
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved31
COMPONENT guideCurved33 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved32
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved32
COMPONENT guideCurved34 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved33
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved33
COMPONENT guideCurved35 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved34
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved34
COMPONENT guideCurved36 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved35
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved35
COMPONENT guideCurved37 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved36
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved36
COMPONENT guideCurved38 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved37
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved37
COMPONENT guideCurved39 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved38
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved38
COMPONENT guideCurved40 = Guide(
w1 = 0.03, h1 = 0.12, w2 = 0.03, h2 = 0.12, l = 0.499995,
R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0, 0, 0.5) RELATIVE guideCurved39
ROTATED (0,angleGuideCurved,0) RELATIVE guideCurved39
/* bunker wall, m=2, 3.0 m */
COMPONENT bunker = Guide(w1= 0.03, h1=0.12, w2=0.03, h2=0.12,
l=3.45, R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0,0,0.5) RELATIVE guideCurved40
/*15cm space for main shutter*/
/* guide segment 3, m=2, 1.3 m */
COMPONENT guide3 = Guide(w1=0.03, h1=0.12, w2=0.03, h2=0.12,
l=5.2, R0 = R0, Qc = Qc, alpha = ALPHA, m = M, W = W)
WHEN (!VIRTUALIN) AT (0,0,3.6) RELATIVE bunker
COMPONENT slitGuideEnd = Slit(xmin=-0.016,xmax=0.016, ymin=-0.061,ymax=0.061)
WHEN (!VIRTUALIN) AT (0,0,5.2001) RELATIVE guide3
COMPONENT psd_guide_end = PSD_monitor(
xwidth=0.04, yheight=0.15,
nx=64, ny=64, filename="psd_guide_end.dat", restore_neutron = 1)
WHEN (!VIRTUALIN) AT (0, 0, 0.04) RELATIVE slitGuideEnd
COMPONENT emon_guide_end = E_monitor(
nE = 100,filename = "emon_guide_end.dat",xwidth=0.04, yheight=0.15, Emin = emini, Emax = emaxi, restore_neutron = 1)
AT (0, 0, 0.05) RELATIVE slitGuideEnd
COMPONENT lmon_guide_end = L_monitor(
nL = 100, filename = "lmon_guide_end.dat", xwidth=0.04, yheight=0.15,Lmin = lmin, Lmax = lmax, restore_neutron = 1)
WHEN (!VIRTUALIN) AT (0, 0, 0.06) RELATIVE slitGuideEnd
COMPONENT divmon_guide_end = Divergence_monitor(
nh = 128, nv = 128, filename = "divmon_guide_end.dat",
restore_neutron = 1, xwidth = 0.04, yheight = 0.15,
maxdiv_h = 2, maxdiv_v = 2, restore_neutron = 1)
WHEN (!VIRTUALIN) AT (0, 0, 0.07) RELATIVE slitGuideEnd
COMPONENT focus_mono = Arm()
WHEN (!VIRTUALIN) AT (0, 0, 0.15) RELATIVE slitGuideEnd
ROTATED (0, machine_real.a1, 0) RELATIVE slitGuideEnd
EXTEND %{
Mono_order=-1;
%}
SPLIT SPLITMREP COMPONENT monochromator_curved = Monochromator_curved(
reflect = "HOPG.rfl", zwidth = 0.15, yheight = 0.025,
gap = 0.001, NH = 1, NV = 5, mosaich = mono_mosaic_h,
mosaicv = mono_mosaic_v, r0 = 1, Q = 1.8734, RV = rv,
RH = 0)
WHEN (!VIRTUALIN) AT (0, 0, 0) RELATIVE focus_mono
EXTEND %{
if(SCATTERED) Mono_order=order;
%}
COMPONENT a2 = Arm()
WHEN (!VIRTUALIN) AT (0,0,0) RELATIVE focus_mono
ROTATED (0, machine_real.a2, 0) RELATIVE slitGuideEnd
COMPONENT slitShutter = Slit(
xmin = -0.02, xmax = 0.02,
ymin = -0.075, ymax = 0.075)
WHEN (!VIRTUALIN) AT (0, 0, 0.2) RELATIVE a2
ROTATED (0,0,0) RELATIVE a2
COMPONENT MSCollimator = Collimator_linear(
xmin = -0.02, xmax = 0.02, ymin = -0.075, ymax = 0.075, length = 0.20 ,
divergence = COLL_MS )
WHEN (!VIRTUALIN) AT (0, 0, dmc) RELATIVE a2
COMPONENT infilter = Filter_gen(
xmin = -0.02, xmax = 0.02, ymin = -0.075, ymax = 0.075, options="wavevector multiply", filename=INFILTERFILE)
WHEN (INFILTER>0 && !VIRTUALIN) AT (0, 0,0.201) RELATIVE MSCollimator
COMPONENT psd_virt = PSD_monitor(
nx=128, ny=128, filename="psd_virt.dat", xwidth = 0.10, yheight = 0.10 )
WHEN (!VIRTUALIN) AT (0, 0, dmv-0.01) RELATIVE a2
COMPONENT lmon_virt = L_monitor(
nL = 100, filename = "lmon_virt.dat", xwidth=0.06, yheight=0.10,//the size of the beam
Lmin = lmin, Lmax = lmax, restore_neutron=1)
WHEN (!VIRTUALIN) AT (0, 0, dmv) RELATIVE a2 // Needs to be here in order to propagate virtual_out to dmv
COMPONENT aa2 = Arm()
WHEN (!VIRTUALIN) AT (0,0,dmv) RELATIVE a2
/* If the virtual output is generated the secondary spectrometer IS NOT simulated */
/* COMPONENT virtualout = Virtual_output(filename=SOURCEFILE, bufsize=0)*/
/*WHEN (!VIRTUALIN && VIRTUALOUT) AT (0, 0, 0) RELATIVE aa2*/
/**/
/**/
/*COMPONENT virtualsource = Virtual_input(filename=SOURCEFILE, verbose=1, repeat_count=REP)*/
/*WHEN (VIRTUALIN && !VIRTUALOUT) AT (0,0,0) RELATIVE aa2*/
COMPONENT OrderMon = Monitor_nD(
xwidth = 0.04, yheight = 0.08,
user1="Mono_order", username1="Intensity of multiples",
options="user1 bins=5 limits=[0.5 5.5], user1 bins=5 limits=[0.5 5.5]", filename="OrderMonNtest.dat", restore_neutron=1)
WHEN (Mono_order && !VIRTUALOUT) AT (0, 0, 0.170-4e-3) RELATIVE aa2
COMPONENT kMoni = PSD_monitor_psf_eff(eff=EFF, k0=1.553, xwidth = 0.04, yheight = 0.08, restore_neutron=1,filename="kMoni.dat")
WHEN(!VIRTUALOUT) AT (0, 0, 0.170-3e-3) RELATIVE aa2
COMPONENT kMoni1st = PSD_monitor_psf_eff(eff=EFF, k0=1.553, xwidth = 0.04, yheight = 0.08, restore_neutron=1,filename="kMoni1st.dat")
WHEN (Mono_order==1 && !VIRTUALOUT) AT (0, 0, 0.170-2e-3) RELATIVE aa2
COMPONENT kMoni2nd = PSD_monitor_psf_eff(eff=EFF, k0=1.553, xwidth = 0.04, yheight = 0.08, restore_neutron=1,filename="kMoni2nd.dat")
WHEN (Mono_order==2 && !VIRTUALOUT) AT (0, 0, 0.170-1e-3) RELATIVE aa2
COMPONENT kMoni3rd = PSD_monitor_psf_eff(eff=EFF, k0=1.553, xwidth = 0.04, yheight = 0.08, restore_neutron=1,filename="kMoni3rd.dat")
WHEN (Mono_order==3 && !VIRTUALOUT) AT (0, 0, 0.170) RELATIVE aa2
COMPONENT slitMonochromator = Slit(
xmin = -MSL/1000.0, xmax = MSR/1000.0,
ymin = -MSB/1000.0, ymax = MST/1000.0)
WHEN(!VIRTUALOUT) AT (0, 0, 0.285) RELATIVE aa2
COMPONENT Perspex = Incoherent(Vc=1,sigma_abs=0.019,sigma_inc=4.7, xwidth = 0.1, yheight = 0.1, zdepth = PTHICK, p_interact=1e-2)
WHEN (PERSPEX>0 && !VIRTUALOUT) AT (0, 0, 0.3) RELATIVE aa2
COMPONENT psd_samplepos_1cm2 = PSD_monitor( xwidth = 0.01, yheight = 0.01, restore_neutron=1,filename="psd_samplepos_1cm2.dat")
WHEN(!VIRTUALOUT) AT (0, 0, dvs) RELATIVE aa2
COMPONENT emon_samplepos_1cm2 = E_monitor(
nE=100, filename="emon_samplepos_1cm2.dat",xwidth = 0.01, yheight = 0.01, Emin=emini, Emax=emaxi, restore_neutron=1)
WHEN(!VIRTUALOUT) AT (0, 0, dvs) RELATIVE aa2
COMPONENT divmon_samplepos_1cm2 = Divergence_monitor(
nh = 128, nv = 128, filename = "divmon_samplepos_1cm2.dat",
xwidth = 0.01, yheight = 0.01, maxdiv_h = 3, maxdiv_v = 3, restore_neutron=1)
WHEN(!VIRTUALOUT) AT (0, 0, dvs) RELATIVE aa2
COMPONENT psd_samplepos_large = PSD_monitor( xwidth = 0.06, yheight = 0.06, restore_neutron=1,filename="psd_samplepos_large.dat")
WHEN(!VIRTUALOUT) AT (0, 0, dvs) RELATIVE aa2
SPLIT SPLITREP COMPONENT a3 = Arm()
WHEN(!VIRTUALOUT) AT (0,0,dvs) RELATIVE aa2
ROTATED (0, machine_real.a3, 0) RELATIVE aa2
COMPONENT aa3 = Arm()
WHEN(!VIRTUALOUT) AT (0,0,0) RELATIVE a3
ROTATED (0, 0, TILT) RELATIVE a3
COMPONENT incohSample = Incoherent( // The size is the standard Vanadium sample at RITA
/* V0=1,sig_a=0,sig_i=4.70,radius_i=0, radius_o=0.0025, h=0.068,target_index=10, // perspex sample */
Vc=13.827,sigma_abs=5.08,sigma_inc=5.08,thickness=0.0201/2-0.0149/2, radius=0.0201/2, yheight=0.0187,target_index=10, // vanadium sample
focus_xw=0.16,focus_yh=0.16) // focus on ana_slit1.
WHEN (SAMPLE==1 && !VIRTUALOUT)
AT (0, 0, 0) RELATIVE aa3
COMPONENT powderSample = PowderN( // The size is the standard sapphire sample at RITA
reflections=PowderFile, d_phi = 12 , radius = 0.0068 , yheight = 0.015, pack = 1 , Vc = 254.52, sigma_abs = 0.4625 ,
sigma_inc = 0.0188, p_inc = 0, barns=BARNS)
WHEN (SAMPLE==2 && !VIRTUALOUT)
AT (0, 0, 0) RELATIVE aa3
COMPONENT crystalSample = Single_crystal(//order=1, p_transmit=0,
reflections = SingleXFile, mosaic=MOS, xwidth = SAMPLESIZE, yheight = SAMPLESIZE,zdepth = SAMPLESIZE, delta_d_d=DD_D,
ax =AAX , ay = AAY, az =AAZ , bx =BBX , by =BBY, bz =BBZ , cx =CCX , cy =CCY , cz =CCZ, barns=BARNS)
WHEN (SAMPLE==3 && !VIRTUALOUT)
AT (0, 0, 0) RELATIVE aa3
EXTEND %{
if(!SCATTERED) ABSORB;
%}
COMPONENT phononSample = Phonon_simple(
radius = SAMPLESIZE/2, yheight = SAMPLESIZE, focus_xw =0.16 ,
focus_yh = 0.16, sigma_abs = 0.171, sigma_inc = 0.003,
a = 4.95, b = 4.95, c = 10, M=207.2, DW = 1, T = 300,
target_index = 7)// Focus on the ana_slit1
WHEN (SAMPLE==4 && !VIRTUALOUT) AT (0, 0, 0) RELATIVE aa3
COMPONENT psd_4pi = PSD_monitor_4PI(
nx = 1000, ny = 1000, filename = "psd_4pi",
restore_neutron = 1, radius = 0.1)
WHEN (!VIRTUALOUT) AT (0, 0, dvs) RELATIVE aa2
COMPONENT a4 = Arm()
WHEN (!VIRTUALOUT) AT (0, 0, 0) RELATIVE a3
ROTATED (0, machine_real.a4, 0) RELATIVE aa2
COMPONENT slitSample = Slit(
xmin = -SSL/1000.0, xmax = SSR/1000.0,
ymin = -SSB/1000.0, ymax = SST/1000.0)
WHEN (!VIRTUALOUT) AT (0, 0, d_sample_slit) RELATIVE a4
COMPONENT filter_coll=Exact_radial_coll(
radius=0.4525, nslit=9, d=0.000125,verbose=1,h_in=0.2,h_out=0.2,length=0.0988,theta_min=-10.26/2,theta_max=10.26/2
)
WHEN (OUTFILTER>0 && !VIRTUALOUT)
AT (0, 0, d_sample_filter-0.4525-0.0988/2) RELATIVE a4
COMPONENT filter = Filter_gen(
xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1, options="wavevector multiply", filename=OUTFILTERFILE)
WHEN (OUTFILTER>0 && !VIRTUALOUT)
AT (0, 0,0.4525+0.0988+0.0001) RELATIVE filter_coll
COMPONENT ana_slit1 = Slit(
xmin = -0.158/2, xmax = 0.158/2,
ymin = -0.08/2, ymax = 0.08/2)
WHEN (!VIRTUALOUT) AT (0, 0, d_sample_filter+0.13) RELATIVE a4
ROTATED (0,0,0) RELATIVE a4
COMPONENT ana_slit2 = Slit(
xmin = -0.158/2, xmax = 0.158/2,
ymin = -0.103/2, ymax = 0.103/2)
WHEN (!VIRTUALOUT) AT (0, 0, d_sample_filter+0.33) RELATIVE a4
ROTATED (0,0,0) RELATIVE a4
COMPONENT emon_before_ana = E_monitor(
xmin = -0.060, xmax = 0.060, ymin = -0.085, ymax = 0.085,
Emin=eminf, Emax=emaxi, nE=100, filename="emon_before_ana.dat", restore_neutron=1)
WHEN (!VIRTUALOUT) AT (0, 0, dsa-5*ana_d) RELATIVE a4
COMPONENT psd_before_ana = PSD_monitor(
nx = 128, ny = 128, filename = "psd_before_ana.dat",
//xmin = -0.1, xmax = 0.1, ymin = -0.1, ymax = 0.1)
xmin = -0.060, xmax = 0.060, ymin = -0.085, ymax = 0.085)
WHEN (!VIRTUALOUT) AT (0, 0, dsa-5*ana_d+0.001) RELATIVE a4
COMPONENT divmon_before_ana = Divergence_monitor(
nh = 128, nv = 128, filename = "divmon_before_ana",
xwidth = 0.02, yheight = 0.17, maxdiv_h = 1, maxdiv_v = 1, restore_neutron = 1)
WHEN (!VIRTUALOUT) AT (0, 0, dsa-5*ana_d+0.002) RELATIVE a4
SPLIT SPLITAREP COMPONENT focus_ana = Arm()
WHEN (!VIRTUALOUT) AT (0, 0, dsa) RELATIVE a4
ROTATED (0, machine_real.aa5, 0) RELATIVE a4
EXTEND %{
AnaBlade=0;
%}
COMPONENT an1l= Monochromator_flat(// The mosaic values for this blade have not been checked!
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=40, mosaicv=40,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -4*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c1, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 1;
%}
COMPONENT an1u= Monochromator_flat( // The mosaic values for this blade have not been checked!
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=40, mosaicv=40,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -4*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c1, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 1;
%}
COMPONENT an2l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=38.7, mosaicv=38.7,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -3*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c2, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 2;
%}
COMPONENT an2u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=43.0, mosaicv=43.0,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -3*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c2, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 2;
%}
COMPONENT an3l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=31.1, mosaicv=31.1,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -2*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c3, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 3;
%}
COMPONENT an3u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=35.5, mosaicv=35.5,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -2*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c3, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 3;
%}
COMPONENT an4l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=27.2, mosaicv=27.2,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -1*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c4, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 4;
%}
COMPONENT an4u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=30.4, mosaicv=30.4,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, -1*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c4, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 4;
%}
COMPONENT an5l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=36.6, mosaicv=36.6,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 0) RELATIVE focus_ana
ROTATED (0, machine_real.c5, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 5;
%}
COMPONENT an5u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=35.9, mosaicv=35.9,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 0) RELATIVE focus_ana
ROTATED (0, machine_real.c5, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 5;
%}
COMPONENT an6l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=31.5, mosaicv=31.5,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c6, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 6;
%}
COMPONENT an6u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=36.1, mosaicv=36.1,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c6, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 6;
%}
COMPONENT an7l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=33.1, mosaicv=33.1,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 2*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c7, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 7;
%}
COMPONENT an7u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=37.2, mosaicv=37.2,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 2*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c7, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 7;
%}
COMPONENT an8l= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=46.8, mosaicv=46.8,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 3*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c8, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 8;
%}
COMPONENT an8u= Monochromator_flat(
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=51.3, mosaicv=51.3,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 3*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c8, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 8;
%}
COMPONENT an9l= Monochromator_flat(// The mosaic values for this blade have not been checked!
zmin=-wan/2.0, zmax=wan/2.0, ymin=-ana_h/2.0, ymax=0,
mosaich=40, mosaicv=40,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 4*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c9, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 9;
%}
COMPONENT an9u= Monochromator_flat( // The mosaic values for this blade have not been checked!
zmin=-wan/2.0, zmax=wan/2.0, ymin=0, ymax=ana_h/2.0,
mosaich=40, mosaicv=40,
r0=ana_r0, Q=ana_q)
WHEN (!VIRTUALOUT) AT (0, 0, 4*ana_d) RELATIVE focus_ana
ROTATED (0, machine_real.c9, 0) RELATIVE focus_ana
//GROUP ANA
EXTEND %{
if(SCATTERED) AnaBlade = 9;
%}
COMPONENT a6 = Arm()
WHEN (!VIRTUALOUT) AT (0,0,0) RELATIVE focus_ana
ROTATED (0, machine_real.a6, 0) RELATIVE a4
COMPONENT emon_before_coarse = E_monitor(
nE=100, filename = "emon_before_coarse.dat", Emin=eminf, Emax=emaxf,
xmin = -0.01, xmax = 0.01, ymin = -0.15, ymax = 0.15, restore_neutron=1)
//xmin = -0.060, xmax = 0.060, ymin = -0.085, ymax = 0.085, restore_neutron=1)
WHEN (!VIRTUALOUT) AT (0, 0, dad-BladeLength-0.02) RELATIVE a6
COMPONENT psd_before_coarse = PSD_monitor(
nx = 128, ny = 128, filename = "psd_before_coarse.dat",
xmin = -0.15, xmax = 0.15, ymin = -0.15, ymax = 0.15, restore_neutron=1)
//xmin = -0.060, xmax = 0.060, ymin = -0.085, ymax = 0.085, restore_neutron=1)
WHEN (!VIRTUALOUT) AT (0, 0, dad-BladeLength-0.01) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT ArmR1 = Arm()
WHEN (!VIRTUALOUT) AT (-WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,-RC/9,0) RELATIVE a6
COMPONENT BladeR1 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmR1
EXTEND %{
if (SCATTERED) printf("Absorption in R1\n");
%}
COMPONENT ArmR2 = Arm()
AT (-3*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,-3*RC/9,0) RELATIVE a6
COMPONENT BladeR2 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmR2
COMPONENT ArmR3 = Arm()
WHEN (!VIRTUALOUT) AT (-5*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,-5*RC/9,0) RELATIVE a6
COMPONENT BladeR3 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0) AT (0,0,0) RELATIVE ArmR3
COMPONENT ArmR4 = Arm()
WHEN (!VIRTUALOUT) AT (-7*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,-7*RC/9,0) RELATIVE a6
COMPONENT BladeR4 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0) AT (0,0,0) RELATIVE ArmR4
COMPONENT ArmR5 = Arm()
WHEN (!VIRTUALOUT) AT (-9*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,-9*RC/9,0) RELATIVE a6
COMPONENT BladeR5 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0) AT (0,0,0) RELATIVE ArmR5
COMPONENT ArmL1 = Arm()
WHEN (!VIRTUALOUT) AT (WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,LC/9,0) RELATIVE a6
COMPONENT BladeL1 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmL1
COMPONENT ArmL2 = Arm()
AT (3*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,3*LC/9,0) RELATIVE a6
COMPONENT BladeL2 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmL2
COMPONENT ArmL3 = Arm()
AT (5*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,5*LC/9,0) RELATIVE a6
COMPONENT BladeL3 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmL3
COMPONENT ArmL4 = Arm()
WHEN (!VIRTUALOUT) AT (7*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,7*LC/9,0) RELATIVE a6
COMPONENT BladeL4 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmL4
COMPONENT ArmL5 = Arm()
WHEN (!VIRTUALOUT) AT (9*WindowSize/2,0,dad-0.005) RELATIVE a6
ROTATED (0,9*LC/9,0) RELATIVE a6
EXTEND %{
BinX = 0; BinY=0;
%}
COMPONENT BladeL5 = Absorber(xmin=-BladeThickness/2, xmax=BladeThickness/2,
ymin=-BladeHeight/2, ymax=BladeHeight/2,
zmin=-BladeLength,zmax=0)
WHEN (COARSE>0 && !VIRTUALOUT) AT (0,0,0) RELATIVE ArmL5
COMPONENT psd_detector = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_detector.dat",restore_neutron=0) // restore_neutron needs to be 0 to propagate the netrons in use for EXTEND section
WHEN (!VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
EXTEND %{
BinX = floor((x - xmin)*nx/(xmax - xmin)); BinY = floor((y - ymin)*ny/(ymax - ymin));
%}
COMPONENT emon_detector = E_monitor(
nE=100, filename="detector.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (!VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window1 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window1.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[1] && BinX <= XwinMax[1] && BinY >= YwinMin[1] && BinY <= YwinMax[1] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window1 = E_monitor(
nE = 100, filename="window1.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[1] && BinX <= XwinMax[1] && BinY >= YwinMin[1] && BinY <= YwinMax[1] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window2 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window2.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[2] && BinX <= XwinMax[2] && BinY >= YwinMin[2] && BinY <= YwinMax[2] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window2 = E_monitor(
nE = 100, filename="window2.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[2] && BinX <= XwinMax[2] && BinY >= YwinMin[2] && BinY <= YwinMax[2] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window3 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window3.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[3] && BinX <= XwinMax[3] && BinY >= YwinMin[3] && BinY <= YwinMax[3] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window3 = E_monitor(
nE = 100, filename="window3.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[3] && BinX <= XwinMax[3] && BinY >= YwinMin[3] && BinY <= YwinMax[3] && !VIRTUALOUT) AT (0, 0, dad+0.0215+0.0008) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window4 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window4.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[4] && BinX <= XwinMax[4] && BinY >= YwinMin[4] && BinY <= YwinMax[4] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window4 = E_monitor(
nE = 100, filename="window4.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[4] && BinX <= XwinMax[4] && BinY >= YwinMin[4] && BinY <= YwinMax[4] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window5 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window5.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[5] && BinX <= XwinMax[5] && BinY >= YwinMin[5] && BinY <= YwinMax[5] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window5 = E_monitor(
nE = 100, filename="window5.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[5] && BinX <= XwinMax[5] && BinY >= YwinMin[5] && BinY <= YwinMax[5] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window6 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window6.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[6] && BinX <= XwinMax[6] && BinY >= YwinMin[6] && BinY <= YwinMax[6] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window6 = E_monitor(
nE = 100, filename="window6.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[6] && BinX <= XwinMax[6] && BinY >= YwinMin[6] && BinY <= YwinMax[6] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window7 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window7.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[7] && BinX <= XwinMax[7] && BinY >= YwinMin[7] && BinY <= YwinMax[7] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window7 = E_monitor(
nE = 100, filename="window7.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[7] && BinX <= XwinMax[7] && BinY >= YwinMin[7] && BinY <= YwinMax[7] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window8 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window8.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[8] && BinX <= XwinMax[8] && BinY >= YwinMin[8] && BinY <= YwinMax[8] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window8 = E_monitor(
nE = 100, filename="window8.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[8] && BinX <= XwinMax[8] && BinY >= YwinMin[8] && BinY <= YwinMax[8] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT psd_window9 = PSD_monitor_psf_eff(eff=0.8, k0=1.553,
xmin = -det_width/2.0, xmax = det_width/2.0, ymin = -det_height/2.0,
ymax = det_height/2.0, nx = 128, ny = 128, psf = PSF, filename = "psd_window9.dat",restore_neutron=1)
WHEN (BinX >= XwinMin[9] && BinX <= XwinMax[9] && BinY >= YwinMin[9] && BinY <= YwinMax[9] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
COMPONENT emon_window9 = E_monitor(
nE = 128, filename="window9.dat", xwidth =det_width , yheight=det_height, Emin=eminf, Emax=emaxf,restore_neutron=1)
WHEN (BinX >= XwinMin[9] && BinX <= XwinMax[9] && BinY >= YwinMin[9] && BinY <= YwinMax[9] && !VIRTUALOUT) AT (0, 0, dad+0.0215) RELATIVE a6
ROTATED (0,180,0) RELATIVE a6
END
|