1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*******************************************************************************
* McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: RTP_SANS
*
* %Identification
* Written by: E. Farhi and Megat Harun Al-Rashid
* Date: June 2014
* Origin: ILL/RTP
* %INSTRUMENT_SITE: TRIGA
*
* The SANS instrument installed at Reactor TRIGA PUSPATI (Malaysia)
*
* %Description
* This is a 4m long SANS installed on a radial beam port 4 at the Reactor TRIGA
* PUSPATI (RTP). Te beam port 4 is a radial tube that originates from the core,
* through the graphite reflector. A thick Be filter selects the cold tail of the
* thermal spectrum, and removes higher order PG reflections.
* A PG(002) monochromator selects the 5A neutrons that are sent into a 4m - 4m
* SANS with a 60 cm PSD detector 128x128 pixels.
* The monochromator is here used in fixed double focusing geometry.
* The accessible Q range is then 0.01-0.1 Angs-1.
*
* This model contains a detailed description of the Be filter, monochromator
* and SANS set-up. The Be filter is in the monochromator block.
*
* Example: mcrun RTP_SANS.instr lambda=5
*
* %Parameters
* lambda: [Angs] monochromator selected wavelength
* dlambda: [Angs] monochromator wavelength spread
* DM: [Angs] d-spacing for the monochromator reflection
* Mono_tilt: [deg] angle tilt between the 3 monochromator layers
* mono_rotation: [deg] additional monochromator offset rotation for e.g rocking curves
* Be_Filter_depth: [m] Depth of Be filter
*
* %Link
* <a href="http://www.nuclearmalaysia.gov.my/Plant&Facilities/reactor.php">Nuclear Malaysia</a>
* %Link
* M. Sufi et al., J. AppL Cryst. (1997). 30, 884-888 [doi:10.1107/S0021889897001738]
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT RTP_SANS(lambda=5, DM=3.355, dlambda=.2, Be_Filter_depth=.15, Mono_tilt=-1, mono_rotation=0)
/* The DECLARE section allows us to declare variables or small */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
double A1,L;
%}
USERVARS
%{
double mono_index;
%}
/* The INITIALIZE section is executed when the simulation starts */
/* (C code). You may use them as component parameter values. */
INITIALIZE
%{
/* monochromator rotation angle for Bragg reflection [deg] */
A1 = asin(lambda/2/DM)*RAD2DEG;
/* distance used for focusing [m] */
L = 4;
printf("RTP_SANS: Monochromator take-off angle=%g [deg]\n", 2*A1);
%}
/* Here comes the TRACE section, where the actual */
/* instrument is defined as a sequence of components. */
TRACE
/* The Arm() class component defines reference points and orientations */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used */
/* for further RELATIVE reference, Other useful keywords are : ROTATED */
/* EXTEND GROUP PREVIOUS. Also think about adding a neutron source ! */
/* Progress_bar is an Arm displaying simulation progress. */
COMPONENT Origin = Progress_bar()
AT (0,0,0) ABSOLUTE
/* the source is focused in wavelength to provide 5 Angs neutrons */
/* to study the Be filter, use white beam e.g. dlambda = 4.5 */
COMPONENT source = Source_gen(
radius = .154/2,
dist = 1.16+1.50, focus_xw = .082, focus_yh = .09, lambda0 = 5,
dlambda = dlambda, I1 = 2.79e12/25, T1 = 300)
AT (0, 0, 0) RELATIVE Origin
COMPONENT source_monitor = Monitor_nD(
xwidth=.154, yheight=.154, options="x y")
AT (0, 0, 0.01) RELATIVE Origin
COMPONENT CoarseCollimator1 = Guide(w1=.154, h1=.154, l=1.16125,m=0)
AT (0, 0, 0.01) RELATIVE PREVIOUS
COMPONENT CoarseCollimator2 = Guide(w1=.11, h1=.11, l=1.5,m=0)
AT (0, 0, 1.16125+0.003) RELATIVE PREVIOUS
/* a slit that also detects wavelength */
COMPONENT lmon = Monitor_nD(
xwidth=.11, options="slit disk, auto wavelength", bins=50)
AT (0, 0, 1.5+0.01) RELATIVE PREVIOUS
/* Be filter ---------------------------------------------------------------- */
COMPONENT Be_Position = Arm()
AT (0, 0, .147+.15/2) RELATIVE PREVIOUS
COMPONENT Be_Cryostat = PowderN(
yheight=.2, radius=.144, thickness=.002,
reflections = "Al.lau", concentric=1, p_transmit=.95, p_inc=1e-4)
AT (0,0,0) RELATIVE Be_Position
COMPONENT Be_Filter = PowderN(
xwidth=.15, yheight=.15, zdepth=Be_Filter_depth, reflections="Be.laz", p_inc=1e-4)
AT (0,0,0) RELATIVE Be_Position
COMPONENT Be_Cryostat_out = COPY(Be_Cryostat)(concentric=0)
AT (0,0,0) RELATIVE Be_Position
COMPONENT lmo_afterBe = Monitor_nD(
xwidth=.082, yheight=0.09, options="slit, auto wavelength", bins=50)
AT (0, 0, .145+.15/2+1e-3) RELATIVE Be_Position
/* monochromator ------------------------------------------------------------ */
SPLIT COMPONENT mono_cradle = Arm()
AT (0, 0, .145+.15/2+.176) RELATIVE Be_Position
COMPONENT mono_rotation = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, -A1+mono_rotation, 0) RELATIVE mono_cradle
EXTEND %{
mono_index=0;
%}
COMPONENT mono1 = Monochromator_curved(
width=.11, height=.09, NH=2,NV=3,
RV=2*L*sin(DEG2RAD*A1), RV=2*L/sin(DEG2RAD*A1),
DM=DM, mosaich=48, mosaicv=48,
reflect="HOPG.rfl" ,transmit="HOPG.trm")
AT (-.01, 0, 0) RELATIVE mono_rotation
ROTATED (0, Mono_tilt, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=1;
%}
COMPONENT mono2 = COPY(mono1)
AT (0, 0, 0) RELATIVE mono_rotation
ROTATED (0, 0, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=2;
%}
COMPONENT mono3 = COPY(mono1)
AT (0.01, 0, 0) RELATIVE mono_rotation
ROTATED (0, -Mono_tilt, 0) RELATIVE mono_rotation
EXTEND %{
if (SCATTERED) mono_index=3;
%}
COMPONENT mono_takeoff = Arm()
AT (0, 0, 0) RELATIVE mono_cradle
ROTATED (0, -2*A1, 0) RELATIVE mono_cradle
COMPONENT psd_transmit = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
AT (0, 0, 0.25) RELATIVE mono_cradle
GROUP mono_rt
/* primary collimator (flight path) 3.8 m ----------------------------------- */
COMPONENT psd_reflect = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
AT (0, 0, 0.574) RELATIVE mono_takeoff
GROUP mono_rt
EXTEND %{
if (!mono_index) ABSORB;
%}
COMPONENT lmon_reflect2 = Monitor_nD(
xwidth=.05, yheight=.05,
options="disk, auto wavelength", bins=50)
AT (0, 0, 0.575) RELATIVE mono_takeoff
/*COMPONENT lmon_reflect = Monitor_nD(
xwidth=.02, yheight=.02, user1=mono_index,
options="disk slit, auto wavelength, user1 limits=[0 4]", bins=50)
AT (0, 0, 0.575+1e-4) RELATIVE mono_takeoff*/
COMPONENT coll1=Guide(w1=.05,h1=.05,l=3.8)
AT (0, 0, 0.575+1e-3) RELATIVE mono_takeoff
COMPONENT sample_psd = Monitor_nD(
xwidth=.02, yheight=.02, options="disk slit, x y", bins=50)
AT (0, 0, 0.575+3.80+1e-2) RELATIVE mono_takeoff
/* sample ------------------------------------------------------------------- */
/* from JAC 1997: flux at sample = 3900 n/s/cm2 */
SPLIT 100 COMPONENT sample = Sans_spheres(
R = 100, Phi = 1e-3, Delta_rho = 0.6,
sigma_abs = 0.5, xwidth=0.01, yheight=0.01, zdepth=0.005)
AT (0, 0, .575+3.80+.10) RELATIVE mono_takeoff
EXTEND %{
if (!SCATTERED) ABSORB;
%}
/* secondary flight path (detector tube) 4m --------------------------------- */
COMPONENT det = Monitor_nD(xwidth=.6, yheight=.6, bins=128, options="x y slit")
AT (0, 0, 3.8) RELATIVE sample
COMPONENT PSDrad = PSD_monitor_rad(
filename = "psd2.dat", filename_av = "psd2_av.dat", rmax = 0.45)
AT (0, 0, 1e-2) RELATIVE det
COMPONENT det_tube = Shape(radius=1, yheight=4)
AT (0, 0, .1+4/2) RELATIVE sample
ROTATED (90,0,0) RELATIVE sample
COMPONENT reactor = Shape(radius=.7/2, yheight=.4)
AT (0,0,-.35) RELATIVE Origin
/* This section is executed when the simulation ends (C code). Other */
/* optional sections are : SAVE */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END
|