File: RTP_SANS.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (227 lines) | stat: -rw-r--r-- 8,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*******************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: RTP_SANS
*
* %Identification
* Written by: E. Farhi and Megat Harun Al-Rashid
* Date: June 2014
* Origin: ILL/RTP
* %INSTRUMENT_SITE: TRIGA
*
* The SANS instrument installed at Reactor TRIGA PUSPATI (Malaysia)
*
* %Description
* This is a 4m long SANS installed on a radial beam port 4 at the Reactor TRIGA
* PUSPATI (RTP). Te beam port 4 is a radial tube that originates from the core,
* through the graphite reflector. A thick Be filter selects the cold tail of the
* thermal spectrum, and removes higher order PG reflections.
* A PG(002) monochromator selects the 5A neutrons that are sent into a 4m - 4m
* SANS with a 60 cm PSD detector 128x128 pixels.
* The monochromator is here used in fixed double focusing geometry.
* The accessible Q range is then 0.01-0.1 Angs-1.
*
* This model contains a detailed description of the Be filter, monochromator
* and SANS set-up. The Be filter is in the monochromator block.
*
* Example: mcrun RTP_SANS.instr lambda=5
*
* %Parameters
* lambda: [Angs]        monochromator selected wavelength
* dlambda: [Angs]       monochromator wavelength spread
* DM: [Angs]            d-spacing for the monochromator reflection
* Mono_tilt: [deg]      angle tilt between the 3 monochromator layers
* mono_rotation: [deg]  additional monochromator offset rotation for e.g rocking curves
* Be_Filter_depth: [m]  Depth of Be filter
*
* %Link
* <a href="http://www.nuclearmalaysia.gov.my/Plant&Facilities/reactor.php">Nuclear Malaysia</a>
* %Link
* M. Sufi et al., J. AppL Cryst. (1997). 30, 884-888 [doi:10.1107/S0021889897001738]
*
* %End
*******************************************************************************/
DEFINE INSTRUMENT RTP_SANS(lambda=5, DM=3.355, dlambda=.2, Be_Filter_depth=.15, Mono_tilt=-1, mono_rotation=0)

/* The DECLARE section allows us to declare variables or  small      */
/* functions in C syntax. These may be used in the whole instrument. */
DECLARE
%{
  double A1,L;
%}

USERVARS
%{
  double mono_index;
%}

/* The INITIALIZE section is executed when the simulation starts     */
/* (C code). You may use them as component parameter values.         */
INITIALIZE
%{
  /* monochromator rotation angle for Bragg reflection [deg] */
  A1 = asin(lambda/2/DM)*RAD2DEG;
  /* distance used for focusing [m] */
  L  = 4;

  printf("RTP_SANS: Monochromator take-off angle=%g [deg]\n", 2*A1);
%}

/* Here comes the TRACE section, where the actual      */
/* instrument is defined as a sequence of components.  */
TRACE

/* The Arm() class component defines reference points and orientations  */
/* in 3D space. Every component instance must have a unique name. Here, */
/* Origin is used. This Arm() component is set to define the origin of  */
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used   */
/* for further RELATIVE reference, Other useful keywords are : ROTATED  */
/* EXTEND GROUP PREVIOUS. Also think about adding a neutron source !    */
/* Progress_bar is an Arm displaying simulation progress.               */
COMPONENT Origin = Progress_bar()
  AT (0,0,0) ABSOLUTE

/* the source is focused in wavelength to provide 5 Angs neutrons */
/* to study the Be filter, use white beam e.g. dlambda = 4.5      */
COMPONENT source = Source_gen(
    radius = .154/2,
    dist = 1.16+1.50, focus_xw = .082, focus_yh = .09, lambda0 = 5,
    dlambda = dlambda, I1 = 2.79e12/25, T1 = 300)
  AT (0, 0, 0) RELATIVE Origin

COMPONENT source_monitor = Monitor_nD(
  xwidth=.154, yheight=.154, options="x y")
  AT (0, 0, 0.01) RELATIVE Origin

COMPONENT CoarseCollimator1 = Guide(w1=.154, h1=.154, l=1.16125,m=0)
  AT (0, 0, 0.01) RELATIVE PREVIOUS

COMPONENT CoarseCollimator2 = Guide(w1=.11, h1=.11, l=1.5,m=0)
  AT (0, 0, 1.16125+0.003) RELATIVE PREVIOUS

/* a slit that also detects wavelength */
COMPONENT lmon = Monitor_nD(
  xwidth=.11, options="slit disk, auto wavelength", bins=50)
  AT (0, 0, 1.5+0.01) RELATIVE PREVIOUS

/* Be filter ---------------------------------------------------------------- */
COMPONENT Be_Position = Arm()
  AT (0, 0, .147+.15/2) RELATIVE PREVIOUS

COMPONENT Be_Cryostat = PowderN(
  yheight=.2, radius=.144, thickness=.002,
  reflections = "Al.lau", concentric=1, p_transmit=.95, p_inc=1e-4)
  AT (0,0,0) RELATIVE Be_Position

COMPONENT Be_Filter = PowderN(
  xwidth=.15, yheight=.15, zdepth=Be_Filter_depth, reflections="Be.laz", p_inc=1e-4)
  AT (0,0,0) RELATIVE Be_Position

COMPONENT Be_Cryostat_out = COPY(Be_Cryostat)(concentric=0)
  AT (0,0,0) RELATIVE Be_Position

COMPONENT lmo_afterBe = Monitor_nD(
  xwidth=.082, yheight=0.09, options="slit, auto wavelength", bins=50)
  AT (0, 0, .145+.15/2+1e-3) RELATIVE Be_Position

/* monochromator ------------------------------------------------------------ */
SPLIT COMPONENT mono_cradle = Arm()
  AT (0, 0, .145+.15/2+.176) RELATIVE Be_Position

COMPONENT mono_rotation = Arm()
  AT (0, 0, 0) RELATIVE mono_cradle
  ROTATED (0, -A1+mono_rotation, 0) RELATIVE mono_cradle
  EXTEND %{
    mono_index=0;
  %}

COMPONENT mono1 = Monochromator_curved(
    width=.11, height=.09, NH=2,NV=3,
    RV=2*L*sin(DEG2RAD*A1), RV=2*L/sin(DEG2RAD*A1),
    DM=DM, mosaich=48, mosaicv=48,
    reflect="HOPG.rfl" ,transmit="HOPG.trm")
  AT (-.01, 0, 0) RELATIVE mono_rotation
  ROTATED (0, Mono_tilt, 0) RELATIVE mono_rotation
  EXTEND %{
    if (SCATTERED) mono_index=1;
  %}

COMPONENT mono2 = COPY(mono1)
  AT (0, 0, 0) RELATIVE mono_rotation
  ROTATED (0, 0, 0) RELATIVE mono_rotation
  EXTEND %{
    if (SCATTERED) mono_index=2;
  %}

COMPONENT mono3 = COPY(mono1)
  AT (0.01, 0, 0) RELATIVE mono_rotation
  ROTATED (0, -Mono_tilt, 0) RELATIVE mono_rotation
  EXTEND %{
    if (SCATTERED) mono_index=3;
  %}

COMPONENT mono_takeoff = Arm()
  AT (0, 0, 0) RELATIVE mono_cradle
  ROTATED (0, -2*A1, 0) RELATIVE mono_cradle

COMPONENT psd_transmit = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
  AT (0, 0, 0.25) RELATIVE mono_cradle
  GROUP mono_rt

/* primary collimator (flight path) 3.8 m ----------------------------------- */
COMPONENT psd_reflect = Monitor_nD(xwidth=.12, yheight=.12, options="x y", bins=50)
  AT (0, 0, 0.574) RELATIVE mono_takeoff
  GROUP mono_rt
  EXTEND %{
    if (!mono_index) ABSORB;
  %}

COMPONENT lmon_reflect2 = Monitor_nD(
  xwidth=.05, yheight=.05,
  options="disk, auto wavelength", bins=50)
  AT (0, 0, 0.575) RELATIVE mono_takeoff

/*COMPONENT lmon_reflect = Monitor_nD(
  xwidth=.02, yheight=.02, user1=mono_index,
  options="disk slit, auto wavelength, user1 limits=[0 4]", bins=50)
  AT (0, 0, 0.575+1e-4) RELATIVE mono_takeoff*/

COMPONENT coll1=Guide(w1=.05,h1=.05,l=3.8)
  AT (0, 0, 0.575+1e-3) RELATIVE mono_takeoff

COMPONENT sample_psd = Monitor_nD(
  xwidth=.02, yheight=.02, options="disk slit, x y", bins=50)
  AT (0, 0, 0.575+3.80+1e-2) RELATIVE mono_takeoff

/* sample ------------------------------------------------------------------- */
/* from JAC 1997: flux at sample = 3900 n/s/cm2 */
SPLIT 100 COMPONENT sample = Sans_spheres(
  R = 100, Phi = 1e-3, Delta_rho = 0.6,
  sigma_abs = 0.5, xwidth=0.01, yheight=0.01, zdepth=0.005)
  AT (0, 0, .575+3.80+.10) RELATIVE mono_takeoff
EXTEND %{
 if (!SCATTERED) ABSORB;
%}

/* secondary flight path (detector tube) 4m --------------------------------- */
COMPONENT det = Monitor_nD(xwidth=.6, yheight=.6, bins=128, options="x y slit")
  AT (0, 0, 3.8) RELATIVE sample

COMPONENT PSDrad = PSD_monitor_rad(
    filename = "psd2.dat", filename_av = "psd2_av.dat", rmax = 0.45)
  AT (0, 0, 1e-2) RELATIVE det

COMPONENT det_tube = Shape(radius=1, yheight=4)
  AT (0, 0, .1+4/2) RELATIVE sample
  ROTATED (90,0,0) RELATIVE sample

COMPONENT reactor = Shape(radius=.7/2, yheight=.4)
  AT (0,0,-.35) RELATIVE Origin

/* This section is executed when the simulation ends (C code). Other    */
/* optional sections are : SAVE                                         */
FINALLY
%{
%}
/* The END token marks the instrument definition end */
END