File: TOF_Reflectometer.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (378 lines) | stat: -rw-r--r-- 13,396 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*******************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
*
* Instrument: Reflectometer
*
* %Identification
* Written by: Anette Vickery, contact: anette.vickery@fys.ku.dk
* Date: November 2011
* Origin: KU
* %INSTRUMENT_SITE: Templates
*
* Horizontal reflectometer, multi-angle of incidence
*
* %Description
* A horizontal reflectometer. The instrument is built of a 2.5 m long mirror and an inclined elliptical guide. The grazing angle is defined by a set of
* slits. The sample size is 4cm x 4cm (horizontal sample).
* The role of the mirror is to provide an angle of incidence of up to 4 deg and at the same time avoid a direct line of sight to the source.
* The reflectivity is the ratio between the direct beam reflected beam intensities. Therefore two simulations are needed to get the reflectivity curve:
*
* Example: mcrun Reflectometer.instr -n1e10 directbeam=1,thetasample=0.4,Qmin=0,Qmax=0.15 -d directbeam
* Example: mcrun Reflectometer.instr -n1e10 directbeam=0,thetasample=0.4,Qmin=0,Qmax=0.15 -d reflectedbeam
*
* %Parameters
* directbeam: []        If 1, the sample is a mirror with reflectivity 1. If 0, the mirror reflects like a D2O surface with zero roughness
* Lam_min: [AA]        Minimum wavelength emitted by the cold moderator
* Lam_max: [AA]        Maximum wavelength emitted by the cold moderator
* deltatheta: [%]      The angular resolution
* theta_sample: [deg]  The grazing angle
* defineAngle: []       If 0, the angle defining slits are wide open. If 1 the angular resolution is deltatheta
* Qmin: [AA^-1]        The minimum value of the interesting Qrange
* Qmax: [AA^-1]        The maximum value of the interesting Qrange
* straight: []          If 1, the guide walls are straight
* width: [m]           The width of the guide in the case of straight guide walls
* directbeam: []       
* defineAngle: []      
* straight: []         
*******************************************************************************/
DEFINE INSTRUMENT Reflectometer( directbeam=1, Lam_min=2.0, Lam_max=10, deltatheta=2, theta_sample=1, defineAngle=1, Qmin=0, Qmax=0.5, straight=1, width=0.05 )
DECLARE
%{
double Y_sample=-0.000516, Y_mirror=-6e-3, Y_guide=-0.008385, MINDIV=-4.5,MAXDIV=-0.1;
double focus_inv=1.581542, focus_outv=1.957539, small_axis_h=0.25, T_mirror=1.136359, TT_guide=2.140996;
double focus_inh=1.582,focus_outh=1.958,small_axis_w=0.25;
double deltaLambda=1e-3;
double foot=40,fxw=0.13,fyh=0.1;
double sample_Z=0.0; // negative sample_Z: move monitor upstream
double zlos=0.59,cutoffguide=0,slitGravity=1,slitGravCor=7.2075 ;// the slit height are adjusted due to gravity. Mean displacements are as for 7.21AA neutrons
double vCor,deltaY_Grav1,deltaY_Grav2; // slitheight correction due to gravity.
double h[2], w[2];
double focus_s_w; double focus_e_w;
double focus_s_h; double focus_e_h;
double elength_h; double elength_w;
// parameters for guide calculation
double guide_start=1.27+1e-6;
double W_par=0.003, R0_par=0.99,Qcrit=0.0217,mvalue=6,alpha_par=6.07;

// parameters for slit settings
 double S1gap=2,S2gap=2;
double Y_Slit1,Y_Slit2;// relative to guideaxis

// parameters for the source
double Pulse_width=0.00286;
double frequency=14;
double guide_dist, Pulse_freq;

// Parametes for the mirror
double L_mirror=2.5;         //length
double h_mirror=0.12;        //width

double dist_moderator_detector=30, dist_moderator_mirrorbegin=2, dist_guide_S1=0.02, dist_S1_S2=1.5, dist_sample_detector=3;
double guide_length,dist_guide_S2,dist_guide_sample,dist_S2_sample;

double sampleposition=27-3.25;// distance mirror-arm--sample
// Parameters for defining source focusing:
double focus_yh; // height of focusing rectangle
char optionstring1 [128];
char optionstring2 [128];
char optionstring3 [128];
char optionstring4 [128];
char optionstring5 [128];
char optionstring51 [128];
char optionstring6 [128];
char optionstring6x [128];
double deltaTheta;
double LOSSlitheight;
%}

USERVARS %{
  double mirflag;
  double guide1flag;
  double guide2flag;
  double reflectflag;
%}

INITIALIZE
%{

if (!Lam_max){
    Lam_max=Lam_min+deltaLambda;
}

 if (straight){
   focus_inh=1000;
   focus_outh=1000;
   small_axis_w=width;
 }
printf("-------sampleposition= %g m \n", sampleposition);
guide_length=30-(2+2.5+2+3);
printf("--------------------------guide_length= %g m \n", guide_length);
/* -------------------- square guide cross section: -------------------- */
/*  naming convention: focus_inh is the horizontal focus
    and focus_inv is the vertical focus. Distance from guide to focalpoints.
    The horizontal corrosponds to the width and vertical the height. */
    printf("-------------------------- focus_outh = %g m \n",focus_outh);


    focus_s_h=-focus_inv;
    focus_e_h=guide_length+focus_outv;

    focus_s_w=-focus_inh;
    focus_e_w=guide_length+focus_outh;

    printf("-------------------------- focus_s_h = %g m \n",focus_s_h);
    printf("-------------------------- focus_e_h = %g m \n",focus_e_h);

    elength_h=focus_e_h-focus_s_h;
    elength_w=focus_e_w-focus_s_w;

    h[0]=small_axis_w*sqrt(1-(((0-focus_s_h)-elength_h/2)/(elength_h/2))*(((0-focus_s_h)-elength_h/2)/(elength_h/2)));

    h[1]=small_axis_w*sqrt(1-(((1*guide_length-focus_s_h)-elength_h/2)/(elength_h/2))*(((1*guide_length-focus_s_h)-elength_h/2)/(elength_h/2)));

    w[0]=small_axis_h*sqrt(1-(((0-focus_s_w)-elength_w/2)/(elength_w/2))*(((0-focus_s_w)-elength_w/2)/(elength_w/2)));

    w[1]=small_axis_h*sqrt(1-(((1*guide_length-focus_s_w)-elength_w/2)/(elength_w/2))*(((1*guide_length-focus_s_w)-elength_w/2)/(elength_w/2)));

    printf("-------------------------- h0, h1 = %g, %g m \n",h[0],h[1]);
    printf("-------------------------- w0, w1 = %g, %g m \n",w[0],w[1]);

dist_S2_sample=sampleposition-(guide_start+guide_length+dist_S1_S2+dist_guide_S1);
deltaTheta= deltatheta*DEG2RAD*theta_sample/100;

if (defineAngle){
   S2gap= foot*sin(DEG2RAD*theta_sample)*1e-3; // slitheight to illuminate footprint only
   S1gap = sqrt((deltaTheta*dist_S1_S2*1e3/0.68)*(deltaTheta*dist_S1_S2*1e3/0.68)-S2gap*S2gap)*1e-3;
   }
printf("--------------------------deltaTheta= %g rad \n",deltaTheta);

printf("--------------------------dist_guide_S1= %g mm \n",dist_guide_S1*1e3);
printf("--------------------------dist_S1_S2= %g mm \n",dist_S1_S2*1e3);
printf("--------------------------dist_S2_sample= %g mm \n",dist_S2_sample*1e3);

printf("--------------------------sampleposition= %g mm \n",sampleposition*1e3);
printf("--------------------------S1gap= %g mm \n",S1gap*1e3);
printf("--------------------------S2gap= %g mm \n",S2gap*1e3);


//position of slits not taking gravity into account:
Y_Slit1=-((dist_S1_S2+dist_S2_sample)*(sin(TT_guide*PI/180)-cos(TT_guide*PI/180)*tan(theta_sample*PI/180))-Y_sample);// relative to guide_axis
Y_Slit2=-((dist_S2_sample)*(sin(TT_guide*PI/180)-cos(TT_guide*PI/180)*tan(theta_sample*PI/180))-Y_sample);// relative to guide_axis
printf("--------------------------Y_Slit1= %g m \n", Y_Slit1);
printf("--------------------------Y_Slit2= %g m \n", Y_Slit2);
vCor=3.956e3/slitGravCor; // m/s velocity for slitGravCor wavelength neutrons

//ys1 = g*(zs1^2)./(2.*(v(i).*cos(theta(h))).^2) + tan(theta(h))*zs1;
deltaY_Grav1= -9.81*(dist_S1_S2+dist_S2_sample)*cos(TT_guide*PI/180)*(dist_S1_S2+dist_S2_sample)*cos(TT_guide*PI/180)/(2*vCor*vCor*cos(theta_sample*PI/180)*cos(theta_sample*PI/180) );
deltaY_Grav2= -9.81*(dist_S2_sample)*cos(TT_guide*PI/180)*(dist_S2_sample)*cos(TT_guide*PI/180)/(2*vCor*vCor*cos(theta_sample*PI/180)*cos(theta_sample*PI/180) );
if (slitGravity){
 Y_Slit1=Y_Slit1+deltaY_Grav1; // updating to take gravity into account
 Y_Slit2=Y_Slit2+deltaY_Grav2;// updating to take gravity into account
}

printf("--------------------------deltaY_Grav1 = %g m \n", deltaY_Grav1*1e6);
printf("--------------------------deltaY_Grav2 = %g m \n", deltaY_Grav2*1e6);
printf("--------------------------Y_Slit1= %g m \n", Y_Slit1);
printf("--------------------------Y_Slit2= %g m \n", Y_Slit2);

focus_yh = L_mirror*sin(T_mirror*PI/180); // height of focusing rectangle
printf("--------------------------focus_yh= %g m \n", focus_yh);


printf("--------------------------focus_inh= %g m \n", focus_inh);
printf("--------------------------focus_outh= %g m \n", focus_outh);
printf("--------------------------focus_inv= %g m \n", focus_inv);
printf("--------------------------focus_outv= %g m \n", focus_outv);
printf("--------------------------guide_length= %g m \n",guide_length);
printf("--------------------------guide_start= %g m \n",guide_start);
printf("--------------------------widthOfEllipsev= %g m \n",small_axis_h*0.5);
printf("--------------------------widthOfEllipseh= %g m \n",small_axis_w*0.5);
printf("--------------------------R0=%g m \n",R0_par);
printf("--------------------------Qc=%g m \n",Qcrit);
printf("--------------------------alpha=%g m \n",alpha_par);
printf("--------------------------m=%g m \n",mvalue);
printf("--------------------------W=%g m \n",W_par);

%}

TRACE

COMPONENT Origin = Progress_bar()
  AT (0,0,0) ABSOLUTE
EXTEND %{
guide1flag=0;
guide2flag=0;
reflectflag=0;
mirflag=0;
%}

COMPONENT cold_source = ESS_butterfly(
    Lmin = Lam_min, Lmax = Lam_max, dist = 2,
    focus_xw = fxw, focus_yh =fyh)
  AT (0, 0, 0) RELATIVE Origin


//Position of mirror
  COMPONENT mirror_pos1=Arm()
  AT (0,Y_mirror+(1.25-zlos*0.5)*tan(T_mirror*PI/180), 2+zlos*0.5) RELATIVE Origin
ROTATED (90+T_mirror,0,0) RELATIVE Origin

COMPONENT mirror1 = Mirror(
    xwidth = h_mirror, yheight = zlos, center = 1, m=6, alpha=3.5,
    transmit = 0)
  AT (0, 0, 0) RELATIVE mirror_pos1
EXTEND
   %{
   if (SCATTERED) {
      mirflag=1;
      reflectflag=1;
    }
    %}

COMPONENT mirror_pos0=Arm()
AT (0,Y_mirror, 3.25) RELATIVE Origin
ROTATED (90+T_mirror,0,0) RELATIVE Origin
COMPONENT mirror0 = Mirror(
			   xwidth = h_mirror, yheight = 2*(1.25-zlos), center = 1, m=6, alpha=3.5,
    transmit = 0)
  AT (0, 0, 0) RELATIVE mirror_pos0
EXTEND
   %{
   if (SCATTERED) {
      mirflag=1;
      reflectflag=1;
    }
    %}

  COMPONENT mirror_pos2=Arm()
  AT (0,Y_mirror-(1.25-zlos*0.5)*tan(T_mirror*PI/180), 4.5-zlos*0.5) RELATIVE Origin
ROTATED (90+T_mirror,0,0) RELATIVE Origin

COMPONENT mirror2 = Mirror(
    xwidth = h_mirror, yheight = zlos, center = 1, m=6, alpha=3.5,
    transmit = 0)
  AT (0, 0, 0) RELATIVE mirror_pos2
EXTEND
   %{
   if (SCATTERED) {
      mirflag=1;
      reflectflag=1;
    }
    %}

COMPONENT guide_TT=Arm()
AT (0,Y_guide, 3.25) RELATIVE Origin
ROTATED (TT_guide,0,0) RELATIVE Origin


COMPONENT guide1 = Elliptic_guide_gravity(
    l=guide_length*0.5-1e-6,
    linxw = focus_inh,
    loutxw = focus_outh+guide_length*0.5,
    linyh = focus_inv,
    loutyh= focus_outv+guide_length*0.5,
    minorAxisxw=small_axis_h*0.5,
    minorAxisyh=small_axis_w*0.5,
    R0=R0_par,
    Qc=Qcrit,
    alpha=alpha_par,
    m=mvalue,
    W=W_par)
AT (0, 0,guide_start) RELATIVE guide_TT
EXTEND
   %{
   if (SCATTERED) {
      guide1flag=1;
      reflectflag=1;
   }
    %}


COMPONENT guide2 = Elliptic_guide_gravity(
    l=guide_length*0.5-1e-6-cutoffguide,
    linxw = focus_inh+guide_length*0.5,
    loutxw= focus_outh+cutoffguide,
    linyh = focus_inv+guide_length*0.5,
    loutyh= focus_outv+cutoffguide,
    minorAxisxw=small_axis_h*0.5,
    minorAxisyh=small_axis_w*0.5,
    R0=R0_par,
    Qc=Qcrit,
    alpha=alpha_par,
    m=mvalue,
    W=W_par)
AT (0, 0,guide_start+guide_length*0.5) RELATIVE guide_TT
EXTEND
   %{
   if (SCATTERED) {
      reflectflag=1;
      guide2flag=1;
    }
    %}

/* Insert vertical slits:*/
COMPONENT Slit1Arm=Arm()
  AT (0, 0, guide_start+guide_length+dist_guide_S1) RELATIVE guide_TT
ROTATED (0,0,0) RELATIVE ABSOLUTE

COMPONENT Slit11Arm=Arm()
  AT (0, Y_Slit1, 0) RELATIVE Slit1Arm

COMPONENT Slit1 = Slit(
    xwidth = 0.2, yheight=S1gap)
    AT (0,0,1e-5) RELATIVE Slit11Arm

COMPONENT Slit2Arm=Arm()
  AT (0, 0, guide_start+guide_length+dist_guide_S1+dist_S1_S2) RELATIVE guide_TT
ROTATED (0,0,0) RELATIVE ABSOLUTE

COMPONENT Slit22Arm=Arm()
  AT (0, Y_Slit2, 0) RELATIVE Slit2Arm

COMPONENT Slit2 = Slit(
    xwidth = 1, yheight=S2gap)
    AT (0,0,1e-5) RELATIVE Slit22Arm

//----------------position sample :
COMPONENT Hor_sampleArm=Arm()
  AT (0, 0, sampleposition) RELATIVE guide_TT
ROTATED (-(TT_guide),0,0) RELATIVE guide_TT

COMPONENT Ver_sampleArm=Arm()
  AT  (0,Y_sample,0) RELATIVE Hor_sampleArm
ROTATED (90,0,0) RELATIVE Hor_sampleArm

COMPONENT mirrorDirect = Mirror(
    reflect = "Reflectometer_directbeam.txt", xwidth = 4e-2, yheight = 4e-2,center=1,
    transmit = 0) WHEN (directbeam)
  AT (0, sample_Z, 0) RELATIVE Ver_sampleArm
ROTATED (0,0,90) RELATIVE Ver_sampleArm
EXTEND
   %{
   if (!SCATTERED) {
	ABSORB;
    }
    %}

COMPONENT mirror = Mirror(
    reflect = "Reflectometer_reffile.txt", xwidth = 4e-2, yheight = 4e-2,center=1,
    transmit = 0) WHEN (!directbeam)
  AT (0, sample_Z, 0) RELATIVE Ver_sampleArm
ROTATED (0,0,90) RELATIVE Ver_sampleArm
EXTEND
   %{
   if (!SCATTERED) {
	ABSORB;
    }
    %}

COMPONENT TOF2QcylPSD = TOF2Q_cylPSD_monitor(
    nQ = 100, filename = "TOF2QcylPSD_1", ny = 1, radius = 3,
    yheight = 1, Qmin=Qmin, Qmax=Qmax, T_zero=0.5*2.86*1e-3, L_flight=30, restore_neutron = 1,theta=DEG2RAD*theta_sample)
  AT (0, 0, 0) RELATIVE  Hor_sampleArm
ROTATED (0,0,90) RELATIVE ABSOLUTE

FINALLY
%{
%}
END