1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Instrument: Template TAS instrument
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: 2006
* Origin: <a href="http://www.ill.fr">ILL (France)</a>
* %INSTRUMENT_SITE: Templates
*
* Template RESCAL type triple-axis machine (TAS)
*
* %Description
* This instrument is a simple model of triple-axis spectrometer.
* It is directly illuminated by the moderator,
* and has curved monochromator and analyzer.
* Sample can be specified as a powder, liquid/amorphous or a pure incoherent
* scatterer (e.g. vanadium, which is the default).
* Sample geometry can be spherical or cylindrical.
* For PG002 monochromator/analyzer setting, a reflectivity curve vs. wavelength
* is used, else reflectivity is set to 70 %. To suppress collimators, set their
* divergence to 0 (ALFn BETn).
* Default instrument geometry is from IN20@ILL with PG monochromator/analyzer.
*
* Monochromator lattice parameter
* PG 002 DM=3.355 AA (Highly Oriented Pyrolythic Graphite)
* PG 004 DM=1.607 AA
* Heusler 111 DM=3.362 AA (Cu2MnAl)
* CoFe DM=1.771 AA (Co0.92Fe0.08)
* Ge 111 DM=3.266 AA
* Ge 311 DM=1.714 AA
* Ge 511 DM=1.089 AA
* Ge 533 DM=0.863 AA
* Si 111 DM=3.135 AA
* Cu 111 DM=2.087 AA
* Cu 002 DM=1.807 AA
* Cu 220 DM=1.278 AA
* Cu 111 DM=2.095 AA
*
* IN22 configuration (at H25 thermal m=2 guide end):
* KI=3.84, QM=1.0, EN=0.0, verbose=1,
* WM=0.15, HM=0.12, NHM=1, NVM=9, RMV=-1,
* WA=0.20, HA=0.10, NHA=11, NVA=3, RAV=-1, RAH=-1,
* SM=-1, SS=1, SA=-1,
* L1=10.0, L2=1.7, L3=1.0, L4=0.8
*
* IN8 Configuration: with Copper optics
* KF=5, KI=0, QM=0.5, EN=5, verbose=1
* WM=0.23, HM=0.19, RMH=-1, RMV=-1, DM=1.807, NHM=15, NVM=15,
* WA=0.16, HA=0.08, RAH=-1, RAV=-1, DA=2.087, NHA=15, NVA=15,
* L1=2.33
*
* %Example: QM=1 Sqw_coh=V.lau Detector: D7_SC3_1D_I=3.0e+08
* %Example: QM=1 Sqw_coh=V.lau Detector: He3H_I=260
*
* %Parameters
* KI: [Angs-1] Incoming neutron wavevector
* KF: [Angs-1] Outgoing neutron wavevector
* EI: [meV] Incoming neutron energy
* EF: [meV] Outgoing neutron energy
* QH: [rlu] Measurement QH position in crystal
* QK: [rlu] Measurement QK position in crystal
* QL: [rlu] Measurement QL position in crystal
* EN: [meV] Energy transfer in crystal
* QM: [Angs-1] Wavevector transfer in crystal
* KFIX: [Angs-1] Fixed KI or KF value for Rescal compatibility
* FX: [1:KI,2:KF] Fixed KI or KF type for Rescal compatibility
* L1: [m] Source-Monochromator distance. Contains 1st Collimator of length 5.34
* L2: [m] Monochromator-Sample distance. Contains 2nd Collimator of length 0.35
* L3: [m] Sample-Analyzer distance. Contains 3rd Collimator of length 0.40
* L4: [m] Analyzer-detector distance. Contains 4th Collimator of length 0.24
* SM: [1:left, -1:right] Scattering sense of beam from Monochromator
* SS: [1:left, -1:right] Scattering sense of beam from Sample
* SA: [1:left, -1:right] Scattering sense of beam from Analyzer
* DM: [Angs] Monochromator d-spacing
* DA: [Angs] Analyzer d-spacing
* RMV: [m] Monochromator vertical curvature, 0 for flat, -1 for automatic setting
* RMH: [m] Monochromator horizontal curvature, 0 for flat, -1 for automatic setting
* RAV: [m] Analyzer vertical curvature, 0 for flat, -1 for automatic setting
* RAH: [m] Analyzer horizontal curvature, 0 for flat, -1 for automatic setting
* ETAM: [arc min] Monochromator mosaic
* ETAA: [arc min] Analyzer mosaic
* ALF1: [arc min] Horizontal collimation from Source to Monochromator
* ALF2: [arc min] Horizontal collimation from Monochromator to Sample A
* ALF3: [arc min] Horizontal collimation from Sample to Analyzer
* ALF4: [arc min] Horizontal collimation from Analyzer to Detector
* BET1: [arc min] Vertical collimation from Source to Monochromator
* BET2: [arc min] Vertical collimation from Monochromator to Sample A
* BET3: [arc min] Vertical collimation from Sample to Analyzer
* BET4: [arc min] Vertical collimation from Analyzer to Detector
* AS: [Angs] Sample lattice parameter A
* BS: [Angs] Sample lattice parameter B
* CS: [Angs] Sample lattice parameter C
* AA: [deg] Angle between lattice vectors B,C
* BB: [deg] Angle between lattice vectors C,A
* CC: [deg] Angle between lattice vectors A,B
* AX: [rlu] First reciprocal lattice vector in scattering plane, X
* AY: [rlu] First reciprocal lattice vector in scattering plane, Y
* AZ: [rlu] First reciprocal lattice vector in scattering plane, Z
* BX: [rlu] Second reciprocal lattice vector in scattering plane, X
* BY: [rlu] Second reciprocal lattice vector in scattering plane, Y
* BZ: [rlu] Second reciprocal lattice vector in scattering plane, Z
* A1: [deg] Monohromator rotation angle
* A2: [deg] Monohromator take-off angle
* A3: [deg] Sample rotation angle
* A4: [deg] Sample take-off angle
* A5: [deg] Analyzer rotation angle
* A6: [deg] Analyzer take-off angle
* verbose: [1] print TAS configuration. 0 to be quiet
*
* WM: [m] Width of monochromator
* HM: [m] Height of monochromator
* NVM: [1] Number of vertical slabs composing the monochromator
* NHM: [1] Number of horizontal slabs composing the monochromator
* WA: [m] Width of analyzer
* HA: [m] Height of analyzer
* NVA: [1] Number of vertical slabs composing the analyzer
* NHA: [1] Number of horizontal slabs composing the analyzer
*
* Sqw_coh: [str] sample coherent S(q,w) file name. Use LAZ/LAU or SQW file
* Sqw_inc: [str] sample incoherent S(q,w) file name. Use NULL to scatter incoherently
* radius: [m] outer radius of sample hollow cylinder/sphere
* height: [m] sample height. Use 0 for a spherical shape
* thickness: [m] thickness of sample hollow cylinder. 0 for bulk
*
* %Link
* Rescal for Matlab at http://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/matlab-ill/
* %Link
* Restrax at http://omega.ujf.cas.cz/restrax/
* %End
*******************************************************************************/
DEFINE INSTRUMENT templateTAS( KI=2.662, KF=0, EI=0, EF=0, QH=0, QK=0, QL=0,
EN=0, QM=0, KFIX=0, FX=0, L1=9, L2=2.1, L3=1.5, L4=0.7, SM=1, SS=-1, SA=1,
DM=3.3539, DA=3.3539, RMV=-1, RMH=0, RAV=0, RAH=-1, ETAM=30, ETAA=30, ALF1=60,
ALF2=60, ALF3=60, ALF4=60, BET1=120, BET2=120, BET3=120, BET4=120,
AS=6.28, BS=6.28, CS=6.28, AA=90, BB=90, CC=90, AX=1, AY=0, AZ=0, BX=0, BY=1,
BZ=0, verbose=1, A1=0,A2=0,A3=0,A4=0,A5=0,A6=0, NHM=1, NVM=9, WM=0.10,
HM=0.12, NHA=9, NVA=1, WA=0.10, HA=0.12, string Sqw_coh="NULL",
string Sqw_inc="NULL", radius=0.01, thickness=0.005, height=0.05 )
DECLARE
%{
char ethmonopts[128];
char lmonopts[128];
/* Monochromator reflectivity file and scalar */
char Mono_refl[128];
double Mono_r0;
int OpenACC;
#pragma acc declare create(OpenACC)
struct sample_struct {
double as, bs, cs;
double aa, bb, cc;
double ax, ay, az;
double bx, by, bz;
} sample;
struct machine_hkl_struct {
double dm, da;
double l1, l2, l3, l4;
double sm, ss, sa;
double etam, etaa, kfix, fx;
double alf1, alf2, alf3, alf4;
double bet1, bet2, bet3, bet4;
double ki, kf, ei, ef;
double qh, qk, ql, en;
} machine_hkl;
struct machine_real_struct {
double a1,a2,a3,a4,a5,a6;
double rmh, rmv, rah, rav;
double qm, qs, qt[3];
char message[256];
} machine_real;
struct machine_real_struct qhkl2angles(
struct sample_struct sample,
struct machine_hkl_struct machine_hkl,
struct machine_real_struct machine_real) {
/* code from TASMAD/t_rlp.F:SETRLP */
double qhkl[3];
double alpha[3];
double a[3];
double aspv[3][2];
double cosa[3], sina[3];
double cosb[3], sinb[3];
double b[3], c[3], s[4][4];
double vv[3][3], bb[3][3];
double arg, cc;
int i,j,k,l,m,n;
char liquid_case=1;
/* transfer parameters to local arrays */
qhkl[0] = machine_hkl.qh; /* HKL target */
qhkl[1] = machine_hkl.qk;
qhkl[2] = machine_hkl.ql;
alpha[0] = sample.aa; /* cell angles */
alpha[1] = sample.bb;
alpha[2] = sample.cc;
a[0] = sample.as; /* cell parameters */
a[1] = sample.bs;
a[2] = sample.cs;
aspv[0][0]= sample.ax; /* cell axis A */
aspv[1][0]= sample.ay;
aspv[2][0]= sample.az;
aspv[0][1]= sample.bx; /* cell axis B */
aspv[1][1]= sample.by;
aspv[2][1]= sample.bz;
/* default return values */
strcpy(machine_real.message, "");
machine_real.a3 = machine_real.a4 = 0;
machine_real.a1 = machine_real.a5 = 0;
/* if using HKL positioning in crystal (QM = 0) */
if (machine_real.qm <= 0) {
liquid_case = 0;
/* compute reciprocal cell */
for (i=0; i< 3; i++)
if (a[i] <=0) sprintf(machine_real.message, "Lattice parameters a[%i]=%g", i, a[i]);
else {
a[i] /= 2*PI;
alpha[i]*= DEG2RAD;
cosa[i] = cos(alpha[i]);
sina[i] = sin(alpha[i]);
}
cc = cosa[0]*cosa[0]+cosa[1]*cosa[1]+cosa[2]*cosa[2]; /* norm */
cc = 1 + 2*cosa[0]*cosa[1]*cosa[2] - cc;
if (cc <= 0) sprintf(machine_real.message, "Lattice angles (AA,BB,CC) cc=%g", cc);
else cc = sqrt(cc);
if (strlen(machine_real.message)) return machine_real;
/* compute bb */
j=1; k=2;
for (i=0; i<3; i++) {
b[i] = sina[i]/(a[i]*cc);
cosb[i] = (cosa[j]*cosa[k] - cosa[i])/(sina[j]*sina[k]);
sinb[i] = sqrt(1 - cosb[i]*cosb[i]);
j=k; k=i;
}
bb[0][0] = b[0];
bb[1][0] = 0;
bb[2][0] = 0;
bb[0][1] = b[1]*cosb[2];
bb[1][1] = b[1]*sinb[2];
bb[2][1] = 0;
bb[0][2] = b[2]*cosb[1];
bb[1][2] =-b[2]*sinb[1]*cosa[0];
bb[2][2] = 1/a[2];
/* compute vv */
for (k=0; k< 3; k++)
for (i=0; i< 3; i++) vv[k][i] = 0;
for (k=0; k< 2; k++)
for (i=0; i< 3; i++)
for (j=0; j< 3; j++)
vv[k][i] += bb[i][j]*aspv[j][k];
for (m=2; m>=1; m--)
for (n=0; n<3; n++) {
i = (int)fmod(m+1,3); j= (int)fmod(m+2,3);
k = (int)fmod(n+1,3); l= (int)fmod(n+2,3);
vv[m][n]=vv[i][k]*vv[j][l]-vv[i][l]*vv[j][k];
}
for (i=0; i< 3; i++) { /* compute norm(vv) */
c[i]=0;
for (j=0; j< 3; j++)
c[i] += vv[i][j]*vv[i][j];
if (c[i]>0) c[i] = sqrt(c[i]);
else {
sprintf(machine_real.message, "Vectors A and B, c[%i]=%g", i, c[i]);
return machine_real;
}
}
for (i=0; i< 3; i++) /* normalize vv */
for (j=0; j< 3; j++)
vv[j][i] /= c[j];
for (i=0; i< 3; i++) /* compute S */
for (j=0; j< 3; j++) {
s[i][j] = 0;
for (k=0; k< 3; k++)
s[i][j] += vv[i][k]*bb[k][j];
}
s[3][3]=1;
for (i=0; i< 3; i++) s[3][i]=s[i][3]=0;
/* compute q modulus and transverse component */
machine_real.qs = 0;
for (i=0; i< 3; i++) {
machine_real.qt[i] = 0;
for (j=0; j< 3; j++) machine_real.qt[i] += qhkl[j]*s[i][j];
machine_real.qs += machine_real.qt[i]*machine_real.qt[i];
}
if (machine_real.qs > 0) machine_real.qm = sqrt(machine_real.qs);
else sprintf(machine_real.message, "Q modulus too small QM^2=%g", machine_real.qs);
} else {
machine_real.qs = machine_real.qm*machine_real.qm;
}
/* end if qm <= 0 ********************************************* */
/* positioning of monochromator and analyser */
arg = PI/machine_hkl.dm/machine_hkl.ki;
if (fabs(arg > 1))
sprintf(machine_real.message, "Monochromator can not reach this KI. arg=%g", arg);
else {
if (machine_hkl.dm <= 0 || machine_hkl.ki <= 0)
strcpy(machine_real.message, "Monochromator DM=0 or KI=0.");
else
machine_real.a1 = asin(arg)*RAD2DEG;
machine_real.a1 *= machine_hkl.sm;
}
machine_real.a2=2*machine_real.a1;
arg = PI/machine_hkl.da/machine_hkl.kf;
if (fabs(arg > 1))
sprintf(machine_real.message, "Analyzer can not reach this KF. arg=%g",arg);
else {
if (machine_hkl.da <= 0 || machine_hkl.kf <= 0)
strcpy(machine_real.message, "Analyzer DA=0 or KF=0.");
else
machine_real.a5 = asin(arg)*RAD2DEG;
machine_real.a5 *= machine_hkl.sa;
}
machine_real.a6=2*machine_real.a5;
if (strlen(machine_real.message)) return machine_real;
/* code from TASMAD/t_conv.F:SAM_CASE */
arg = (machine_hkl.ki*machine_hkl.ki + machine_hkl.kf*machine_hkl.kf - machine_real.qs)
/ (2*machine_hkl.ki*machine_hkl.kf);
if (fabs(arg) < 1)
machine_real.a4 = RAD2DEG*acos(arg);
else
sprintf(machine_real.message, "Q modulus too big. Can not close triangle. arg=%g", arg);
machine_real.a4 *= machine_hkl.ss;
if (!liquid_case) { /* compute a3 in crystals */
machine_real.a3 =
-atan2(machine_real.qt[1],machine_real.qt[0])
-acos( (machine_hkl.kf*machine_hkl.kf-machine_real.qs-machine_hkl.ki*machine_hkl.ki)
/(-2*machine_real.qm*machine_hkl.ki) );
machine_real.a3 *= RAD2DEG*(machine_real.a4 > 0 ? 1 : -1 );
}
return machine_real;
} /* qhkl2angles */
%}
/* end of DECLARE */
INITIALIZE
%{
#ifdef OPENACC
OpenACC = 1;
#else
OpenACC = 0;
#endif
#pragma acc update device(OpenACC)
double Vi, Vf;
char anglemode = 0;
if (KFIX && FX) {
if (FX == 1) KI = KFIX;
else if (FX == 2) KF = KFIX;
}
/* determine neutron energy from input */
if (KI && !EI) {
Vi = K2V*fabs(KI);
EI = VS2E*Vi*Vi;
}
if (KF && !EF) {
Vf = K2V*fabs(KF);
EF = VS2E*Vf*Vf;
}
machine_real.a1 = A1;
machine_real.a2 = A2;
machine_real.a3 = A3;
machine_real.a4 = A4;
machine_real.a5 = A5;
machine_real.a6 = A6;
if (A1 || A2 || A3 || A4 || A5 || A6) anglemode=1;
if (!anglemode) {
if (!EI && !EF)
exit(fprintf(stderr,
"templateTAS: ERROR: neutron beam energy is not defined (EI, EF, KI, KF)\n"));
/* energy conservation */
if (EI)
EF = EI - EN;
else if (EF)
EI = EF + EN;
/* determine remaining neutron energies */
if (!KI && EI) {
Vi = SE2V*sqrt(EI);
KI = V2K*Vi;
}
if (!KF && EF) {
Vf = SE2V*sqrt(EF);
KF = V2K*Vf;
}
if (!QM && !QH && !QK && !QL)
exit(fprintf(stderr,
"templateTAS: ERROR: No Q transfer defined (QM, QH, QK, QL)\n"));
} else {
/* compute KI, KF if angles are consistent */
if (!KI && fabs(A2-2*A1) < 0.01) {
KI = PI/DM/fabs(sin(DEG2RAD*A1*SM));
}
if (!KF && fabs(A6-2*A5) < 0.01) {
KF = PI/DA/fabs(sin(DEG2RAD*A5*SA));
}
double qs=(KI*KI + KF*KF - cos(A4*DEG2RAD*SS)*(2*KI*KF));
if (!QM && qs>=0) QM = sqrt(qs);
else fprintf(stderr,
"templateTAS: Warning: Can not compute Q-modulus from A4=%g [deg].\n",
A4);
}
/* transfer sample parameters */
sample.aa = AA;
sample.bb = BB;
sample.cc = CC;
sample.as = AS;
sample.bs = BS;
sample.cs = CS;
sample.ax = AX;
sample.ay = AY;
sample.az = AZ;
sample.bx = BX;
sample.by = BY;
sample.bz = BZ;
/* transfer target parameters */
machine_hkl.ki = KI;
machine_hkl.kf = KF;
machine_hkl.ei = EI;
machine_hkl.ef = EF;
machine_hkl.qh = QH;
machine_hkl.qk = QK;
machine_hkl.ql = QL;
machine_hkl.en = EN;
machine_real.qm = QM;
if (verbose) {
printf("templateTAS: Detailed TAS configuration\n");
printf("* Incoming beam: EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s]\n", EI, KI, Vi);
printf("* Outgoing beam: EF=%.4g [meV] KF=%.4g [Angs-1] Vf=%g [m/s]\n", EF, KF, Vf);
}
/* transfer machine parameters */
machine_hkl.l1 = L1;
machine_hkl.l2 = L2;
machine_hkl.l3 = L3;
machine_hkl.l4 = L4;
machine_hkl.sm = SM;
machine_hkl.ss = SS;
machine_hkl.sa = SA;
machine_hkl.dm = DM;
machine_hkl.da = DA;
machine_real.rmv= RMV;
machine_real.rmh= RMH;
machine_real.rav= RAV;
machine_real.rah= RAH;
machine_hkl.etam= ETAM;
machine_hkl.etaa= ETAA;
machine_hkl.alf1= ALF1;
machine_hkl.alf2= ALF2;
machine_hkl.alf3= ALF3;
machine_hkl.alf4= ALF4;
machine_hkl.bet1= BET1;
machine_hkl.bet2= BET2;
machine_hkl.bet3= BET3;
machine_hkl.bet4= BET4;
/* geometry tests w/r to collimator lengths */
if (machine_hkl.l1 <= 1)
fprintf(stderr, "templateTAS: Warning: L1 too short. Min=1\n");
if (machine_hkl.l2 <= 0.35)
exit(fprintf(stderr, "templateTAS: ERROR: L2 too short. Min=0.35\n"));
if (machine_hkl.l3 <= 0.40)
exit(fprintf(stderr, "templateTAS: ERROR: L3 too short. Min=0.40\n"));
if (machine_hkl.l4 <= 0.24)
exit(fprintf(stderr, "templateTAS: ERROR: L4 too short. Min=0.24\n"));
if (!anglemode) {
machine_real = qhkl2angles(sample, machine_hkl, machine_real);
if (strlen(machine_real.message))
exit(fprintf(stderr, "templateTAS: ERROR: %s [qhkl2angles]\n",
machine_real.message));
}
/* compute optimal curvatures */
double L;
L = 1/(1/L1+1/L2);
if (RMV < 0) machine_real.rmv = fabs(2*L*sin(DEG2RAD*machine_real.a1));
if (RMH < 0) machine_real.rmh = fabs(2*L/sin(DEG2RAD*machine_real.a1));
L = 1/(1/L3+1/L4);
if (RAV < 0) machine_real.rav = fabs(2*L*sin(DEG2RAD*machine_real.a5));
if (RAH < 0) machine_real.rah = fabs(2*L/sin(DEG2RAD*machine_real.a5));
if (verbose) {
printf("* Transfer: EN=%g [meV] QM=%g [Angs-1]\n", EN, machine_real.qm);
printf("Angles: A1=%.4g A2=%.4g A3=%.4g A4=%.4g A5=%.4g A6=%.4g [deg]\n",
machine_real.a1, machine_real.a2,
machine_real.a3, machine_real.a4,
machine_real.a5, machine_real.a6);
printf("Monochromator: DM=%.4g [Angs] RMH=%.4g [m] RMV=%.4g [m] %s\n",
machine_hkl.dm, machine_real.rmh, machine_real.rmv,
(!machine_real.rmh && !machine_real.rmv ? "flat" : "curved"));
printf("Analyzer: DA=%.4g [Angs] RAH=%.4g [m] RAV=%.4g [m] %s\n",
machine_hkl.da, machine_real.rah, machine_real.rav,
(!machine_real.rah && !machine_real.rav ? "flat" : "curved"));
printf("Sample: ");
if (strcmp(Sqw_coh, "NULL") && !strstr(Sqw_coh, ".laz") && !strstr(Sqw_coh, ".lau"))
printf("Isotropic (liquid/polymer) %s\n", Sqw_coh);
if (!strcmp(Sqw_coh, "NULL"))
printf("Incoherent\n");
if (strstr(Sqw_coh, ".laz") || strstr(Sqw_coh, ".lau"))
printf("Powder %s\n", Sqw_coh);
}
machine_real.rmv = fabs(machine_real.rmv)*machine_hkl.sm;
machine_real.rmh = fabs(machine_real.rmh)*machine_hkl.sm;
machine_real.rav = fabs(machine_real.rav)*machine_hkl.sa;
machine_real.rah = fabs(machine_real.rah)*machine_hkl.sa;
sprintf(ethmonopts,"theta limits=[-180 180] energy limits=[%g %g], banana", 0.95*EF, 1.05*EF);
sprintf(lmonopts,"lambda limits=[%g %g] cm", 0.95*(2*PI)/fabs(KI), 1.05*(2*PI)/fabs(KI));
/* Based on d-spacing, figure out if we should use HOPG.refl or just use scalar reflectivity: */
if (fabs(machine_hkl.dm-3.355) < 0.2) {
sprintf(Mono_refl,"HOPG.rfl");
Mono_r0=1;
} else {
sprintf(Mono_refl,"");
Mono_r0=0.7;
}
%}
/* end of INITIALIZE */
TRACE
/* Source description */
REMOVABLE COMPONENT Origin=Progress_bar()
AT (0,0,0) ABSOLUTE
/* a flat constant source */
REMOVABLE COMPONENT Source = Source_gen(
radius = 0.10,
dist = machine_hkl.l1,
focus_xw = fabs(WM*sin(machine_real.a1*DEG2RAD)), focus_yh = HM,
T1 = 683.7, I1 = 0.5874e13, T2 = 257.7, I2 = 2.5094e13, T3 = 16.7, I3 = 0.10343e13,
E0 = machine_hkl.ei,
dE = machine_hkl.ei*0.09)
AT (0,0,0) ABSOLUTE
REMOVABLE COMPONENT SC1 = Collimator_linear(
xmin =-WM/2, ymin =-HM/2,
xmax = WM/2, ymax = HM/2,
length = machine_hkl.l1/2,
divergence=ALF1,
divergenceV=BET1)
WHEN (ALF1 && BET1)
AT (0, 0, machine_hkl.l1/4) ABSOLUTE
REMOVABLE COMPONENT Guide_out=Arm()
AT (0, 0, machine_hkl.l1-0.2) ABSOLUTE
COMPONENT Mono_Cradle = Arm()
AT (0, 0, 0.2) RELATIVE PREVIOUS
SPLIT COMPONENT PG1Xtal = Monochromator_curved(
width = WM,
height = HM,
NH=NHM, NV=NVM,
RV=machine_real.rmv, RH=machine_real.rmh,
DM=machine_hkl.dm, mosaich = machine_hkl.etam, mosaicv = machine_hkl.etam,
r0 = Mono_r0,
reflect=Mono_refl)
AT (0, 0, 0) RELATIVE Mono_Cradle
ROTATED (0, machine_real.a1, 0) RELATIVE Mono_Cradle
/* on mono, pointing towards sample */
COMPONENT Mono_Out = Arm()
AT (0,0,0) RELATIVE Mono_Cradle
ROTATED (0, machine_real.a2, 0) RELATIVE Mono_Cradle
COMPONENT D4_SC2_1D = Monitor_nD(
xmin = -0.0420/2, xmax = 0.0420/2,
ymin = -0.1200/2, ymax = 0.1200/2,
options=lmonopts,bins=100)
AT (0, 0, (machine_hkl.l2-0.35)/3) RELATIVE Mono_Out
COMPONENT SC2 = Collimator_linear(
xmin =-0.04/2, ymin =-0.07/2,
xmax = 0.04/2, ymax = 0.07/2,
length = 0.35,
divergence=ALF2,
divergenceV=BET2)
WHEN (ALF2 && BET2)
AT (0, 0, (machine_hkl.l2-0.35)/2) RELATIVE Mono_Out
SPLIT COMPONENT Sample_Cradle = Monitor_nD(xwidth=0.01, yheight=0.01, options="per cm2", restore_neutron=1)
AT (0, 0, machine_hkl.l2) RELATIVE Mono_Out
ROTATED (0, machine_real.a3, 0) RELATIVE Mono_Out
/* Sqw when Sqw_coh is not NULL/.laz/.lau */
COMPONENT Sample = Isotropic_Sqw(
radius = radius, thickness=thickness, yheight = height,
Sqw_coh=Sqw_coh, Sqw_inc=Sqw_inc, p_interact=0.95, order=1, d_phi=RAD2DEG*atan2(HA,machine_hkl.l3) )
AT (0,0,0) RELATIVE Sample_Cradle
COMPONENT Sample_Out = Arm() /* this is the sample-ana axis */
AT (0,0,0) RELATIVE Sample_Cradle
ROTATED (0, machine_real.a4, 0) RELATIVE Mono_Out
COMPONENT D7_SC3_1D = Monitor_nD(
xwidth = 0.06, yheight = HA, bins=100, restore_neutron=1,
options=ethmonopts)
AT (0, 0, 0) RELATIVE Sample_Out
COMPONENT SC3 =Collimator_linear(
xmin =-0.06/2, ymin =-0.12/2,
xmax = 0.06/2, ymax = 0.12/2,
length = 0.40,
divergence=ALF3,
divergenceV=BET3)
WHEN (ALF3 && BET3)
AT (0, 0, (machine_hkl.l3-0.40)/2) RELATIVE Sample_Out
COMPONENT Ana_Cradle = Arm()
AT (0, 0, machine_hkl.l3) RELATIVE Sample_Out
SPLIT COMPONENT PG2Xtal = Monochromator_curved(
width = WA,
height = HA,
NH=NHA, NV=NVA,
RV=machine_real.rav, RH=machine_real.rah,
DM=machine_hkl.da, mosaich = machine_hkl.etaa, mosaicv = machine_hkl.etaa,
r0 = Mono_r0,
reflect=Mono_refl)
AT (0, 0, 0) RELATIVE Ana_Cradle
ROTATED (0, machine_real.a5, 0) RELATIVE Ana_Cradle
COMPONENT Ana_Out = Arm() /* this is the sample-ana axis */
AT (0,0,0) RELATIVE Ana_Cradle
ROTATED (0, machine_real.a6, 0) RELATIVE Ana_Cradle
COMPONENT SC4 =Collimator_linear(
xmin =-0.06/2, ymin =-0.12/2,
xmax = 0.06/2, ymax = 0.12/2,
length = 0.24,
divergence=ALF4,
divergenceV=BET4)
WHEN (ALF4 && BET4)
AT (0, 0, (machine_hkl.l4-0.24)/2) RELATIVE Ana_Out
/* vertical 3He Detector */
COMPONENT He3H = PSD_monitor(
xmin = -0.025400, xmax = 0.025400,
ymin = -0.042850, ymax = 0.042850,
nx=20, ny=20, filename="He3H.psd")
AT (0, 0, machine_hkl.l4) RELATIVE Ana_Out
END
|