File: templateTAS.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (689 lines) | stat: -rw-r--r-- 23,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Instrument: Template TAS instrument
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: 2006
* Origin: <a href="http://www.ill.fr">ILL (France)</a>
* %INSTRUMENT_SITE: Templates
*
* Template RESCAL type triple-axis machine (TAS)
*
* %Description
* This instrument is a simple model of triple-axis spectrometer.
* It is directly illuminated by the moderator,
* and has curved monochromator and analyzer.
* Sample can be specified as a powder, liquid/amorphous or a pure incoherent
* scatterer (e.g. vanadium, which is the default).
* Sample geometry can be spherical or cylindrical.
* For PG002 monochromator/analyzer setting, a reflectivity curve vs. wavelength
* is used, else reflectivity is set to 70 %. To suppress collimators, set their
* divergence to 0 (ALFn BETn).
* Default instrument geometry is from IN20@ILL with PG monochromator/analyzer.
*
* Monochromator lattice parameter
* PG       002 DM=3.355 AA (Highly Oriented Pyrolythic Graphite)
* PG       004 DM=1.607 AA
* Heusler  111 DM=3.362 AA (Cu2MnAl)
* CoFe         DM=1.771 AA (Co0.92Fe0.08)
* Ge       111 DM=3.266 AA
* Ge       311 DM=1.714 AA
* Ge       511 DM=1.089 AA
* Ge       533 DM=0.863 AA
* Si       111 DM=3.135 AA
* Cu       111 DM=2.087 AA
* Cu       002 DM=1.807 AA
* Cu       220 DM=1.278 AA
* Cu       111 DM=2.095 AA
*
* IN22 configuration (at H25 thermal m=2 guide end):
*     KI=3.84, QM=1.0, EN=0.0, verbose=1,
*     WM=0.15, HM=0.12,    NHM=1, NVM=9, RMV=-1,
*     WA=0.20, HA=0.10,  NHA=11, NVA=3, RAV=-1, RAH=-1,
*     SM=-1, SS=1, SA=-1,
*     L1=10.0, L2=1.7, L3=1.0, L4=0.8
*
* IN8 Configuration: with Copper optics
*     KF=5, KI=0, QM=0.5, EN=5, verbose=1
*     WM=0.23, HM=0.19, RMH=-1, RMV=-1, DM=1.807, NHM=15, NVM=15,
*     WA=0.16, HA=0.08, RAH=-1, RAV=-1, DA=2.087, NHA=15, NVA=15,
*     L1=2.33
*
* %Example: QM=1 Sqw_coh=V.lau Detector: D7_SC3_1D_I=3.0e+08
* %Example: QM=1 Sqw_coh=V.lau Detector: He3H_I=260
*
* %Parameters
* KI: [Angs-1]            Incoming neutron wavevector
* KF: [Angs-1]            Outgoing neutron wavevector
* EI: [meV]               Incoming neutron energy
* EF: [meV]               Outgoing neutron energy
* QH: [rlu]               Measurement QH position in crystal
* QK: [rlu]               Measurement QK position in crystal
* QL: [rlu]               Measurement QL position in crystal
* EN: [meV]               Energy transfer in crystal
* QM: [Angs-1]            Wavevector transfer in crystal
* KFIX: [Angs-1]          Fixed KI or KF value for Rescal compatibility
* FX: [1:KI,2:KF]         Fixed KI or KF type for Rescal compatibility
* L1: [m]                 Source-Monochromator distance. Contains 1st Collimator of length 5.34
* L2: [m]                 Monochromator-Sample distance. Contains 2nd Collimator of length 0.35
* L3: [m]                 Sample-Analyzer distance. Contains 3rd Collimator of length 0.40
* L4: [m]                 Analyzer-detector distance. Contains 4th Collimator of length 0.24
* SM: [1:left, -1:right]  Scattering sense of beam from Monochromator
* SS: [1:left, -1:right]  Scattering sense of beam from Sample
* SA: [1:left, -1:right]  Scattering sense of beam from Analyzer
* DM: [Angs]              Monochromator d-spacing
* DA: [Angs]              Analyzer d-spacing
* RMV: [m]                Monochromator vertical curvature, 0 for flat, -1 for automatic setting
* RMH: [m]                Monochromator horizontal curvature, 0 for flat, -1 for automatic setting
* RAV: [m]                Analyzer vertical curvature, 0 for flat, -1 for automatic setting
* RAH: [m]                Analyzer horizontal curvature, 0 for flat, -1 for automatic setting
* ETAM: [arc min]         Monochromator mosaic
* ETAA: [arc min]         Analyzer mosaic
* ALF1: [arc min]         Horizontal collimation from Source to Monochromator
* ALF2: [arc min]         Horizontal collimation from Monochromator to Sample A
* ALF3: [arc min]         Horizontal collimation from Sample to Analyzer
* ALF4: [arc min]         Horizontal collimation from Analyzer to Detector
* BET1: [arc min]         Vertical collimation from Source to Monochromator
* BET2: [arc min]         Vertical collimation from Monochromator to Sample A
* BET3: [arc min]         Vertical collimation from Sample to Analyzer
* BET4: [arc min]         Vertical collimation from Analyzer to Detector
* AS: [Angs]              Sample lattice parameter A
* BS: [Angs]              Sample lattice parameter B
* CS: [Angs]              Sample lattice parameter C
* AA: [deg]               Angle between lattice vectors B,C
* BB: [deg]               Angle between lattice vectors C,A
* CC: [deg]               Angle between lattice vectors A,B
* AX: [rlu]               First reciprocal lattice vector in scattering plane, X
* AY: [rlu]               First reciprocal lattice vector in scattering plane, Y
* AZ: [rlu]               First reciprocal lattice vector in scattering plane, Z
* BX: [rlu]               Second reciprocal lattice vector in scattering plane, X
* BY: [rlu]               Second reciprocal lattice vector in scattering plane, Y
* BZ: [rlu]               Second reciprocal lattice vector in scattering plane, Z
* A1: [deg]               Monohromator rotation angle
* A2: [deg]               Monohromator take-off angle
* A3: [deg]               Sample rotation angle
* A4: [deg]               Sample take-off angle
* A5: [deg]               Analyzer rotation angle
* A6: [deg]               Analyzer take-off angle
* verbose: [1]            print TAS configuration. 0 to be quiet
*
* WM: [m]                 Width of monochromator
* HM: [m]                 Height of monochromator
* NVM: [1]                Number of vertical slabs composing the monochromator
* NHM: [1]                Number of horizontal slabs composing the monochromator
* WA: [m]                 Width of analyzer
* HA: [m]                 Height of analyzer
* NVA: [1]                Number of vertical slabs composing the analyzer
* NHA: [1]                Number of horizontal slabs composing the analyzer
*
* Sqw_coh: [str]          sample coherent S(q,w) file name. Use LAZ/LAU or SQW file
* Sqw_inc: [str]          sample incoherent S(q,w) file name. Use NULL to scatter incoherently
* radius: [m]             outer radius of sample hollow cylinder/sphere
* height: [m]             sample height. Use 0 for a spherical shape
* thickness: [m]          thickness of sample hollow cylinder. 0 for bulk
*
* %Link
* Rescal for Matlab at http://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/matlab-ill/
* %Link
* Restrax at http://omega.ujf.cas.cz/restrax/
* %End
*******************************************************************************/
DEFINE INSTRUMENT templateTAS( KI=2.662, KF=0, EI=0, EF=0, QH=0, QK=0, QL=0,
  EN=0, QM=0, KFIX=0, FX=0, L1=9, L2=2.1, L3=1.5, L4=0.7, SM=1, SS=-1, SA=1,
  DM=3.3539, DA=3.3539, RMV=-1, RMH=0, RAV=0, RAH=-1, ETAM=30, ETAA=30, ALF1=60,
  ALF2=60, ALF3=60, ALF4=60, BET1=120, BET2=120, BET3=120, BET4=120,
  AS=6.28, BS=6.28, CS=6.28, AA=90, BB=90, CC=90, AX=1, AY=0, AZ=0, BX=0, BY=1,
  BZ=0, verbose=1, A1=0,A2=0,A3=0,A4=0,A5=0,A6=0, NHM=1, NVM=9, WM=0.10,
  HM=0.12, NHA=9, NVA=1, WA=0.10, HA=0.12, string Sqw_coh="NULL",
  string Sqw_inc="NULL", radius=0.01, thickness=0.005, height=0.05 )

DECLARE
%{

  char ethmonopts[128];
  char lmonopts[128];
  /* Monochromator reflectivity file and scalar */
  char Mono_refl[128];
  double Mono_r0;

  int OpenACC;
  #pragma acc declare create(OpenACC)
  struct sample_struct {
    double as, bs, cs;
    double aa, bb, cc;
    double ax, ay, az;
    double bx, by, bz;
  } sample;

  struct machine_hkl_struct {
    double dm, da;
    double l1, l2, l3, l4;
    double sm, ss, sa;
    double etam, etaa, kfix, fx;
    double alf1, alf2, alf3, alf4;
    double bet1, bet2, bet3, bet4;
    double ki, kf, ei, ef;
    double qh, qk, ql, en;
  } machine_hkl;

  struct machine_real_struct {
    double a1,a2,a3,a4,a5,a6;
    double rmh, rmv, rah, rav;
    double qm, qs, qt[3];
    char   message[256];
  } machine_real;

  struct machine_real_struct qhkl2angles(
    struct sample_struct      sample,
    struct machine_hkl_struct machine_hkl,
    struct machine_real_struct machine_real) {

      /* code from TASMAD/t_rlp.F:SETRLP */
      double qhkl[3];
      double alpha[3];
      double a[3];
      double aspv[3][2];
      double cosa[3], sina[3];
      double cosb[3], sinb[3];
      double b[3], c[3], s[4][4];
      double vv[3][3], bb[3][3];
      double arg, cc;
      int i,j,k,l,m,n;
      char liquid_case=1;
      /* transfer parameters to local arrays */
      qhkl[0]   = machine_hkl.qh; /* HKL target */
      qhkl[1]   = machine_hkl.qk;
      qhkl[2]   = machine_hkl.ql;
      alpha[0]  = sample.aa; /* cell angles */
      alpha[1]  = sample.bb;
      alpha[2]  = sample.cc;
      a[0]      = sample.as; /* cell parameters */
      a[1]      = sample.bs;
      a[2]      = sample.cs;
      aspv[0][0]= sample.ax; /* cell axis A */
      aspv[1][0]= sample.ay;
      aspv[2][0]= sample.az;
      aspv[0][1]= sample.bx; /* cell axis B */
      aspv[1][1]= sample.by;
      aspv[2][1]= sample.bz;

      /* default return values */
      strcpy(machine_real.message, "");
      machine_real.a3 = machine_real.a4 = 0;
      machine_real.a1 = machine_real.a5 = 0;

      /* if using HKL positioning in crystal (QM = 0) */
      if (machine_real.qm <= 0) {
        liquid_case = 0;
        /* compute reciprocal cell */
        for (i=0; i< 3; i++)
          if (a[i] <=0) sprintf(machine_real.message, "Lattice parameters a[%i]=%g", i, a[i]);
          else {
            a[i]    /= 2*PI;
            alpha[i]*= DEG2RAD;
            cosa[i]  = cos(alpha[i]);
            sina[i]  = sin(alpha[i]);
          }
        cc = cosa[0]*cosa[0]+cosa[1]*cosa[1]+cosa[2]*cosa[2]; /* norm */
        cc = 1 + 2*cosa[0]*cosa[1]*cosa[2] - cc;
        if (cc <= 0) sprintf(machine_real.message, "Lattice angles (AA,BB,CC) cc=%g", cc);
        else cc = sqrt(cc);

        if (strlen(machine_real.message)) return machine_real;

        /* compute bb */
        j=1; k=2;
        for (i=0; i<3; i++) {
          b[i] = sina[i]/(a[i]*cc);
          cosb[i] = (cosa[j]*cosa[k] - cosa[i])/(sina[j]*sina[k]);
          sinb[i] = sqrt(1 - cosb[i]*cosb[i]);
          j=k; k=i;
        }

        bb[0][0] = b[0];
        bb[1][0] = 0;
        bb[2][0] = 0;
        bb[0][1] = b[1]*cosb[2];
        bb[1][1] = b[1]*sinb[2];
        bb[2][1] = 0;
        bb[0][2] = b[2]*cosb[1];
        bb[1][2] =-b[2]*sinb[1]*cosa[0];
        bb[2][2] = 1/a[2];

        /* compute vv */
        for (k=0; k< 3; k++)
          for (i=0; i< 3; i++) vv[k][i] = 0;

        for (k=0; k< 2; k++)
          for (i=0; i< 3; i++)
            for (j=0; j< 3; j++)
              vv[k][i] += bb[i][j]*aspv[j][k];

        for (m=2; m>=1; m--)
          for (n=0; n<3; n++) {
            i = (int)fmod(m+1,3); j= (int)fmod(m+2,3);
            k = (int)fmod(n+1,3); l= (int)fmod(n+2,3);
            vv[m][n]=vv[i][k]*vv[j][l]-vv[i][l]*vv[j][k];
          }

        for (i=0; i< 3; i++) { /* compute norm(vv) */
          c[i]=0;
          for (j=0; j< 3; j++)
            c[i] += vv[i][j]*vv[i][j];
          if (c[i]>0) c[i] =  sqrt(c[i]);
          else {
            sprintf(machine_real.message, "Vectors A and B, c[%i]=%g", i, c[i]);
            return machine_real;
          }
        }

        for (i=0; i< 3; i++) /* normalize vv */
          for (j=0; j< 3; j++)
            vv[j][i] /= c[j];

        for (i=0; i< 3; i++) /* compute S */
          for (j=0; j< 3; j++) {
            s[i][j] = 0;
            for (k=0; k< 3; k++)
              s[i][j] += vv[i][k]*bb[k][j];
          }
        s[3][3]=1;
        for (i=0;  i< 3;  i++)  s[3][i]=s[i][3]=0;

        /* compute q modulus and transverse component */
        machine_real.qs = 0;
        for (i=0; i< 3; i++) {
          machine_real.qt[i] = 0;
          for (j=0; j< 3; j++) machine_real.qt[i] += qhkl[j]*s[i][j];
          machine_real.qs += machine_real.qt[i]*machine_real.qt[i];
        }
        if (machine_real.qs > 0) machine_real.qm = sqrt(machine_real.qs);
        else sprintf(machine_real.message, "Q modulus too small QM^2=%g", machine_real.qs);
      } else {
        machine_real.qs = machine_real.qm*machine_real.qm;
      }
      /* end if  qm <= 0 ********************************************* */

      /* positioning of monochromator and analyser */
      arg = PI/machine_hkl.dm/machine_hkl.ki;
      if (fabs(arg > 1))
        sprintf(machine_real.message, "Monochromator can not reach this KI. arg=%g", arg);
      else {
        if (machine_hkl.dm <= 0 || machine_hkl.ki <= 0)
          strcpy(machine_real.message, "Monochromator DM=0 or KI=0.");
        else
          machine_real.a1 = asin(arg)*RAD2DEG;
        machine_real.a1 *= machine_hkl.sm;
      }
      machine_real.a2=2*machine_real.a1;

      arg = PI/machine_hkl.da/machine_hkl.kf;
      if (fabs(arg > 1))
        sprintf(machine_real.message, "Analyzer can not reach this KF. arg=%g",arg);
      else {
        if (machine_hkl.da <= 0 || machine_hkl.kf <= 0)
          strcpy(machine_real.message, "Analyzer DA=0 or KF=0.");
        else
          machine_real.a5 = asin(arg)*RAD2DEG;
        machine_real.a5 *= machine_hkl.sa;
      }
      machine_real.a6=2*machine_real.a5;
      if (strlen(machine_real.message)) return machine_real;


      /* code from TASMAD/t_conv.F:SAM_CASE */
      arg = (machine_hkl.ki*machine_hkl.ki + machine_hkl.kf*machine_hkl.kf - machine_real.qs)
          / (2*machine_hkl.ki*machine_hkl.kf);
      if (fabs(arg) < 1)
        machine_real.a4 = RAD2DEG*acos(arg);
      else
        sprintf(machine_real.message, "Q modulus too big. Can not close triangle. arg=%g", arg);
      machine_real.a4 *= machine_hkl.ss;

      if (!liquid_case) { /* compute a3 in crystals */
        machine_real.a3 =
            -atan2(machine_real.qt[1],machine_real.qt[0])
            -acos( (machine_hkl.kf*machine_hkl.kf-machine_real.qs-machine_hkl.ki*machine_hkl.ki)
                  /(-2*machine_real.qm*machine_hkl.ki) );
        machine_real.a3 *= RAD2DEG*(machine_real.a4 > 0 ? 1 : -1 );
    }

    return machine_real;
  } /* qhkl2angles */
%}
/* end of DECLARE */

INITIALIZE
%{

#ifdef OPENACC
  OpenACC = 1;
#else
  OpenACC = 0;
#endif
  #pragma acc update device(OpenACC)

  double Vi, Vf;
  char   anglemode = 0;

  if (KFIX && FX) {
    if      (FX == 1) KI = KFIX;
    else if (FX == 2) KF = KFIX;
  }

  /* determine neutron energy from input */
  if (KI && !EI) {
    Vi = K2V*fabs(KI);
    EI = VS2E*Vi*Vi;
  }
  if (KF && !EF) {
    Vf = K2V*fabs(KF);
    EF = VS2E*Vf*Vf;
  }

  machine_real.a1 = A1;
  machine_real.a2 = A2;
  machine_real.a3 = A3;
  machine_real.a4 = A4;
  machine_real.a5 = A5;
  machine_real.a6 = A6;

  if (A1 || A2 || A3 || A4 || A5 || A6) anglemode=1;

  if (!anglemode) {
    if (!EI && !EF)
        exit(fprintf(stderr,
          "templateTAS: ERROR: neutron beam energy is not defined (EI, EF, KI, KF)\n"));

  /* energy conservation */
  if (EI)
    EF = EI - EN;
  else if (EF)
    EI = EF + EN;

  /* determine remaining neutron energies */
  if (!KI && EI) {
    Vi = SE2V*sqrt(EI);
    KI = V2K*Vi;
  }
  if (!KF && EF) {
    Vf = SE2V*sqrt(EF);
    KF = V2K*Vf;
  }

  if (!QM && !QH && !QK && !QL)
    exit(fprintf(stderr,
      "templateTAS: ERROR: No Q transfer defined (QM, QH, QK, QL)\n"));
} else {
  /* compute KI, KF if angles are consistent */
  if (!KI && fabs(A2-2*A1) < 0.01) {
    KI  = PI/DM/fabs(sin(DEG2RAD*A1*SM));
  }
  if (!KF && fabs(A6-2*A5) < 0.01) {
    KF  = PI/DA/fabs(sin(DEG2RAD*A5*SA));
  }
  double qs=(KI*KI + KF*KF - cos(A4*DEG2RAD*SS)*(2*KI*KF));
  if (!QM && qs>=0) QM = sqrt(qs);
  else fprintf(stderr,
      "templateTAS: Warning: Can not compute Q-modulus from A4=%g [deg].\n",
      A4);
}

/* transfer sample parameters */
sample.aa = AA;
sample.bb = BB;
sample.cc = CC;
sample.as = AS;
sample.bs = BS;
sample.cs = CS;
sample.ax = AX;
sample.ay = AY;
sample.az = AZ;
sample.bx = BX;
sample.by = BY;
sample.bz = BZ;

/* transfer target parameters */
machine_hkl.ki = KI;
machine_hkl.kf = KF;
machine_hkl.ei = EI;
machine_hkl.ef = EF;
machine_hkl.qh = QH;
machine_hkl.qk = QK;
machine_hkl.ql = QL;
machine_hkl.en = EN;
machine_real.qm = QM;

if (verbose) {
  printf("templateTAS: Detailed TAS configuration\n");
  printf("* Incoming beam: EI=%.4g [meV] KI=%.4g [Angs-1] Vi=%g [m/s]\n", EI, KI, Vi);
  printf("* Outgoing beam: EF=%.4g [meV] KF=%.4g [Angs-1] Vf=%g [m/s]\n", EF, KF, Vf);
}

/* transfer machine parameters */
machine_hkl.l1 = L1;
machine_hkl.l2 = L2;
machine_hkl.l3 = L3;
machine_hkl.l4 = L4;
machine_hkl.sm = SM;
machine_hkl.ss = SS;
machine_hkl.sa = SA;
machine_hkl.dm = DM;
machine_hkl.da = DA;
machine_real.rmv= RMV;
machine_real.rmh= RMH;
machine_real.rav= RAV;
machine_real.rah= RAH;
machine_hkl.etam= ETAM;
machine_hkl.etaa= ETAA;
machine_hkl.alf1= ALF1;
machine_hkl.alf2= ALF2;
machine_hkl.alf3= ALF3;
machine_hkl.alf4= ALF4;
machine_hkl.bet1= BET1;
machine_hkl.bet2= BET2;
machine_hkl.bet3= BET3;
machine_hkl.bet4= BET4;

/* geometry tests w/r to collimator lengths */
if (machine_hkl.l1 <= 1)
  fprintf(stderr, "templateTAS: Warning: L1 too short. Min=1\n");

if (machine_hkl.l2 <= 0.35)
  exit(fprintf(stderr, "templateTAS: ERROR: L2 too short. Min=0.35\n"));

if (machine_hkl.l3 <= 0.40)
  exit(fprintf(stderr, "templateTAS: ERROR: L3 too short. Min=0.40\n"));

if (machine_hkl.l4 <= 0.24)
  exit(fprintf(stderr, "templateTAS: ERROR: L4 too short. Min=0.24\n"));

if (!anglemode) {
  machine_real = qhkl2angles(sample, machine_hkl, machine_real);
  if (strlen(machine_real.message))
    exit(fprintf(stderr, "templateTAS: ERROR: %s [qhkl2angles]\n",
      machine_real.message));
}

/* compute optimal curvatures */
double L;
L = 1/(1/L1+1/L2);
if (RMV < 0) machine_real.rmv = fabs(2*L*sin(DEG2RAD*machine_real.a1));
if (RMH < 0) machine_real.rmh = fabs(2*L/sin(DEG2RAD*machine_real.a1));
L = 1/(1/L3+1/L4);
if (RAV < 0) machine_real.rav = fabs(2*L*sin(DEG2RAD*machine_real.a5));
if (RAH < 0) machine_real.rah = fabs(2*L/sin(DEG2RAD*machine_real.a5));

if (verbose) {
  printf("* Transfer:     EN=%g [meV] QM=%g [Angs-1]\n", EN, machine_real.qm);
  printf("Angles: A1=%.4g A2=%.4g A3=%.4g A4=%.4g A5=%.4g A6=%.4g [deg]\n",
    machine_real.a1, machine_real.a2,
    machine_real.a3, machine_real.a4,
    machine_real.a5, machine_real.a6);
  printf("Monochromator: DM=%.4g [Angs] RMH=%.4g [m] RMV=%.4g [m] %s\n",
    machine_hkl.dm, machine_real.rmh, machine_real.rmv,
    (!machine_real.rmh && !machine_real.rmv ? "flat" : "curved"));
  printf("Analyzer:      DA=%.4g [Angs] RAH=%.4g [m] RAV=%.4g [m] %s\n",
    machine_hkl.da, machine_real.rah, machine_real.rav,
    (!machine_real.rah && !machine_real.rav ? "flat" : "curved"));

  printf("Sample:        ");
    if (strcmp(Sqw_coh, "NULL") && !strstr(Sqw_coh, ".laz") && !strstr(Sqw_coh, ".lau"))
      printf("Isotropic (liquid/polymer) %s\n", Sqw_coh);
    if (!strcmp(Sqw_coh, "NULL"))
      printf("Incoherent\n");
    if (strstr(Sqw_coh, ".laz") || strstr(Sqw_coh, ".lau"))
      printf("Powder %s\n", Sqw_coh);
}

machine_real.rmv = fabs(machine_real.rmv)*machine_hkl.sm;
machine_real.rmh = fabs(machine_real.rmh)*machine_hkl.sm;
machine_real.rav = fabs(machine_real.rav)*machine_hkl.sa;
machine_real.rah = fabs(machine_real.rah)*machine_hkl.sa;

sprintf(ethmonopts,"theta limits=[-180 180] energy limits=[%g %g], banana", 0.95*EF, 1.05*EF);
sprintf(lmonopts,"lambda limits=[%g %g] cm", 0.95*(2*PI)/fabs(KI), 1.05*(2*PI)/fabs(KI));

/* Based on d-spacing, figure out if we should use HOPG.refl or just use scalar reflectivity: */
if (fabs(machine_hkl.dm-3.355) < 0.2) {
  sprintf(Mono_refl,"HOPG.rfl");
  Mono_r0=1;
} else {
  sprintf(Mono_refl,"");
  Mono_r0=0.7;
}

%}
/* end of INITIALIZE */

TRACE
/* Source description */

REMOVABLE COMPONENT Origin=Progress_bar()
AT (0,0,0) ABSOLUTE

/* a flat constant source */
REMOVABLE COMPONENT Source = Source_gen(
  radius  = 0.10,
  dist = machine_hkl.l1,
  focus_xw = fabs(WM*sin(machine_real.a1*DEG2RAD)), focus_yh = HM,
  T1 = 683.7, I1 = 0.5874e13, T2 = 257.7, I2 = 2.5094e13, T3 =  16.7, I3 = 0.10343e13,
  E0 = machine_hkl.ei,
  dE = machine_hkl.ei*0.09)
AT (0,0,0) ABSOLUTE

REMOVABLE COMPONENT SC1 = Collimator_linear(
  xmin =-WM/2, ymin =-HM/2,
  xmax = WM/2, ymax = HM/2,
  length = machine_hkl.l1/2,
  divergence=ALF1,
  divergenceV=BET1)
WHEN (ALF1 && BET1)
AT (0, 0, machine_hkl.l1/4) ABSOLUTE

REMOVABLE COMPONENT Guide_out=Arm()
AT (0, 0, machine_hkl.l1-0.2) ABSOLUTE

COMPONENT Mono_Cradle = Arm()
  AT (0, 0, 0.2) RELATIVE PREVIOUS

SPLIT COMPONENT PG1Xtal = Monochromator_curved(
  width  = WM,
  height = HM,
  NH=NHM, NV=NVM,
  RV=machine_real.rmv, RH=machine_real.rmh,
  DM=machine_hkl.dm, mosaich = machine_hkl.etam, mosaicv = machine_hkl.etam,
  r0 = Mono_r0,
  reflect=Mono_refl)
AT (0, 0, 0) RELATIVE Mono_Cradle
ROTATED (0, machine_real.a1, 0) RELATIVE Mono_Cradle

/*                                on mono, pointing towards sample */
COMPONENT Mono_Out = Arm()
  AT (0,0,0) RELATIVE Mono_Cradle
  ROTATED (0, machine_real.a2, 0) RELATIVE Mono_Cradle

  COMPONENT D4_SC2_1D = Monitor_nD(
  xmin = -0.0420/2, xmax = 0.0420/2,
  ymin = -0.1200/2, ymax = 0.1200/2,
  options=lmonopts,bins=100)
AT (0, 0, (machine_hkl.l2-0.35)/3) RELATIVE Mono_Out

COMPONENT SC2 = Collimator_linear(
  xmin =-0.04/2, ymin =-0.07/2,
  xmax = 0.04/2, ymax = 0.07/2,
  length = 0.35,
  divergence=ALF2,
  divergenceV=BET2)
WHEN (ALF2 && BET2)
AT (0, 0, (machine_hkl.l2-0.35)/2) RELATIVE Mono_Out

SPLIT COMPONENT Sample_Cradle = Monitor_nD(xwidth=0.01, yheight=0.01, options="per cm2", restore_neutron=1)
  AT (0, 0, machine_hkl.l2) RELATIVE Mono_Out
  ROTATED (0, machine_real.a3, 0) RELATIVE Mono_Out

/* Sqw when Sqw_coh is not NULL/.laz/.lau */
COMPONENT Sample = Isotropic_Sqw(
  radius = radius, thickness=thickness, yheight = height,
  Sqw_coh=Sqw_coh, Sqw_inc=Sqw_inc, p_interact=0.95, order=1, d_phi=RAD2DEG*atan2(HA,machine_hkl.l3) )
AT (0,0,0) RELATIVE Sample_Cradle

COMPONENT Sample_Out = Arm() /*        this is the sample-ana axis */
  AT (0,0,0) RELATIVE Sample_Cradle
  ROTATED (0, machine_real.a4, 0) RELATIVE Mono_Out

COMPONENT D7_SC3_1D = Monitor_nD(
  xwidth = 0.06, yheight = HA, bins=100, restore_neutron=1,
  options=ethmonopts)
AT (0, 0, 0) RELATIVE Sample_Out

COMPONENT SC3 =Collimator_linear(
  xmin =-0.06/2, ymin =-0.12/2,
  xmax = 0.06/2, ymax = 0.12/2,
  length = 0.40,
  divergence=ALF3,
  divergenceV=BET3)
WHEN (ALF3 && BET3)
AT (0, 0, (machine_hkl.l3-0.40)/2) RELATIVE Sample_Out

COMPONENT Ana_Cradle = Arm()
  AT (0, 0, machine_hkl.l3) RELATIVE Sample_Out

SPLIT COMPONENT PG2Xtal = Monochromator_curved(
  width  = WA,
  height = HA,
  NH=NHA, NV=NVA,
  RV=machine_real.rav, RH=machine_real.rah,
  DM=machine_hkl.da, mosaich = machine_hkl.etaa, mosaicv = machine_hkl.etaa,
  r0 = Mono_r0,
  reflect=Mono_refl)
AT (0, 0, 0) RELATIVE Ana_Cradle
ROTATED (0, machine_real.a5, 0) RELATIVE Ana_Cradle

COMPONENT Ana_Out = Arm() /*        this is the sample-ana axis */
  AT (0,0,0) RELATIVE Ana_Cradle
  ROTATED (0, machine_real.a6, 0) RELATIVE Ana_Cradle

COMPONENT SC4 =Collimator_linear(
  xmin =-0.06/2, ymin =-0.12/2,
  xmax = 0.06/2, ymax = 0.12/2,
  length = 0.24,
  divergence=ALF4,
  divergenceV=BET4)
WHEN (ALF4 && BET4)
AT (0, 0, (machine_hkl.l4-0.24)/2) RELATIVE Ana_Out

/* vertical 3He Detector */
COMPONENT He3H = PSD_monitor(
  xmin = -0.025400, xmax = 0.025400,
  ymin = -0.042850, ymax = 0.042850,
  nx=20, ny=20, filename="He3H.psd")
AT (0, 0, machine_hkl.l4) RELATIVE Ana_Out

END