File: Test_focus.instr

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (234 lines) | stat: -rw-r--r-- 6,497 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*******************************************************************************
*         McStas instrument definition URL=http://www.mcstas.org
* Instrument: Test_focus
*
* %Identification
* Written by: Tobias Weber (tweber@ill.fr)
* Date: 3-Feb-2018
* Origin: ILL
*
* %INSTRUMENT_SITE: Tests_optics
*
* Focus testing, comparing Single_crystal and Monochromator_curved
*
* %Description
* For mono_ideal=0 the Single_crystal component is used as monochromator,
* for mono_ideal=1 Monochromator_curved is used with the same settings.
*
* The curvature of the monochromator can be set using mono_curvh and mono_curvv
* for horizontal and vertical focusing, respectively.
* For mono_curvh=0, mono_curvv=0 the monochromator is flat.
* For mono_curvh=-1, mono_curvv=-1 optimal horizontal and vertical focusing is chosen.
* 
* %Parameters 
* src_lam:     [AA] Source mean wavelength
* src_dlam:    [AA] Source wavelength spread
* mono_ideal:  [ ]  Selection of mono-model 0=Single_crystal, 1=Monochromator_curved
* mono_curvh:  [m]  Monochromator horizontal curvature. -1: optimal, 0: flat 
* mono_curvv:  [m]  Monochromator vertical curvature -1: optimal, 0: flat 
*
* %End
*******************************************************************************/

DEFINE INSTRUMENT Test_focus(src_lam=4.5, src_dlam=1.0,
	int mono_ideal=0, mono_curvh=-1, mono_curvv=-1)


DECLARE
%{
	/* Source */
	double src_w = 0.1, src_h = 0.1;
	double src_E = -1.;

	/* Monochromator */
	double mono_mosaic = 20.;
	double mono_d = 3.355;
	double mono_dd = 1e-4;
	int mono_slabs_h = 32, mono_slabs_v = 32;
	double mono_width = 0.1, mono_height = 0.1, mono_depth = 0.005;
	const char *mono_refl = "C_graphite.laz";
	const char *mono_R = "HOPG.rfl", *mono_T = "HOPG.trm";
	double mono_a[3], mono_b[3], mono_c[3];
	double mono_angle = -1.;

	/* Distances */
	double dist_src_mono = 1.;
	double dist_mono_sample = 1.;

	/* Detectors */
	double mon_width = 0.25, mon_height = 0.25;


	/* ------------------------------------------------------------------------ */
	/* Helper functions */
	double lam_to_k(double lam) {
		return 2.*PI / lam;
	}

	double lam_to_v(double lam) {
		double k = lam_to_k(lam);
		double p = HBAR * k*1e10;
		return p / MNEUTRON;
	}

	double lam_to_E(double lam) {
		double v = lam_to_v(lam);
		return v*v * VS2E;
	}

	double bragg_angle(double lam, double d) {
		double dS = lam / (2.*d);
		return asin(dS) * 180. / PI;
	}

	double foc_vert(double angle, double f) {
		return 2.*f * fabs(sin(angle));
	}

	double foc_hori(double angle, double f) {
		return 2.*f / fabs(sin(angle));
	}
	/* ------------------------------------------------------------------------ */
%}


INITIALIZE
%{
	/* crystal orientation */
	mono_a[0] = +2.464; mono_a[1] = 0;     mono_a[2] = 0;
	mono_b[0] = -1.232; mono_b[1] = 2.134; mono_b[2] = 0;
	mono_c[0] = 0;      mono_c[1] = 0;     mono_c[2] = 6.711;

	/* energy & angle */
	if(src_E < 0.)
		src_E = lam_to_E(src_lam);
	if(mono_angle < 0.)
		mono_angle = bragg_angle(src_lam, mono_d);

	/* negative values -> optimal monochromator curvatures */
	if(mono_curvv < 0. || mono_curvh < 0.) {
		/* focal length */
		/*double f_inv = 1./dist_mono_sample + 1./dist_src_mono;*/
		double f_inv = 1./dist_mono_sample + 0.; /* here: perfectly parallel beam from infinity */

		if(mono_curvv < 0.)
			mono_curvv = foc_vert(mono_angle/180.*PI, 1./f_inv);
		if(mono_curvh < 0.)
			mono_curvh = foc_hori(mono_angle/180.*PI, 1./f_inv);
	}

	printf("----------------------------------------\n");
	printf("lambda = %f A, k = %f 1/A\n", src_lam, lam_to_k(src_lam));
	printf("monochromator vfoc = %f m, hfoc = %f m, theta = %f deg, d = %f\n",
		mono_curvv, mono_curvh, mono_angle, mono_d);
	printf("----------------------------------------\n");
%}


/* -------------------------------------------------------------------------- */

TRACE

COMPONENT origin = Progress_bar()
AT (0, 0, 0) RELATIVE ABSOLUTE



/* ----------------------------------------------------------------------------- */
/* Source */

COMPONENT Src = Source_simple(
	xwidth = src_w, yheight = src_h,
	lambda0 = src_lam, dlambda = src_dlam, gauss = 0, flux = 1e10,
	dist = dist_src_mono, focus_xw = mono_width*sin(mono_angle/180.0*PI), focus_yh = mono_height)
AT (0, 0, 0) RELATIVE PREVIOUS
EXTEND
%{
	/* perfect collimation, parallel beam */
	vx = vy = 0;
%}



/* ----------------------------------------------------------------------------- */
/* Mono */

COMPONENT mono_arm1 = Arm()
AT (0, 0, dist_src_mono) RELATIVE Src
ROTATED (0, -mono_angle, 0) ABSOLUTE


COMPONENT mono_crys = Single_crystal(
	xwidth = mono_width, yheight = mono_height, zdepth = mono_depth,
	mosaic = FWHM2RMS*mono_mosaic, delta_d_d = FWHM2RMS*mono_dd, reflections = mono_refl,
	PG = 0, powder = 0, order = 0, recip_cell = 0, barns = 1,
	RX = mono_curvh, RY = mono_curvv,
	ax = mono_a[0],	ay = mono_a[1],	az = mono_a[2],
	bx = mono_b[0], by = mono_b[1], bz = mono_b[2],
	cx = mono_c[0], cy = mono_c[1], cz = mono_c[2])
WHEN(mono_ideal == 0)
AT (0, 0, 0) RELATIVE mono_arm1
ROTATED (0, 90, 0) RELATIVE mono_arm1
EXTEND
%{
	if(!SCATTERED) ABSORB;
%}

COMPONENT mono_ideal = Monochromator_curved(
	width = mono_width, height = mono_height,
	DM = mono_d, mosaic = mono_mosaic,
	NH = mono_slabs_h, NV = mono_slabs_v,
	RV = -mono_curvv, RH = -mono_curvh,
	r0 = 1, reflect = mono_R, t0 = 1, transmit = mono_T,
	order = 0)
WHEN(mono_ideal == 1)
AT (0, 0, 0) RELATIVE mono_arm1
EXTEND
%{
	if(!SCATTERED) ABSORB;
%}



COMPONENT mono_arm2 = Arm()
AT (0, 0, 0) RELATIVE mono_arm1
ROTATED (0, -mono_angle, 0) RELATIVE mono_arm1



/* ----------------------------------------------------------------------------- */
/* Detectors */

COMPONENT psdmon = PSD_monitor(
	nx = 128, ny = 128,
	filename = "psd.dat",
	xwidth = mon_width, yheight = mon_height,
	restore_neutron = 1)
AT (0, 0, dist_mono_sample) RELATIVE mono_arm2

COMPONENT divmon = Divergence_monitor(
	nh = 128, nv = 128,
	maxdiv_h = 3, maxdiv_v = 3,
	filename = "div.dat",
	xwidth = mon_width, yheight = mon_height,
	restore_neutron = 1)
AT (0, 0, 0) RELATIVE PREVIOUS

COMPONENT lmon = L_monitor(
	nL = 128,
	filename = "lam.dat",
	xwidth = mon_width, yheight = mon_height,
	Lmin = src_lam - src_dlam, Lmax = src_lam + src_dlam,
	restore_neutron = 1)
AT (0, 0, 0) RELATIVE PREVIOUS

COMPONENT emon = E_monitor(
	nE = 128,
	filename = "E.dat",
	xwidth = mon_width, yheight = mon_height,
	Emin = src_E - src_E*0.15, Emax = src_E + src_E*0.15,
	restore_neutron = 1)
AT (0, 0, 0) RELATIVE PREVIOUS


END