File: Flex_monitor_3D.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (182 lines) | stat: -rw-r--r-- 5,307 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Flex_monitor_3D
*
* %I
* Written by: Erik B Knudsen & Peter Willendrup
* Date: Oct '20
* Origin: DTU Physics
*
* Flexible monitor.
*
* %D
* A square 3D single monitor that measures intensity (or something else) as a function of two selectable variables or parameters.
*
* Example: Flex_monitor_3D(nU1=20, nU2=20, nU3=20, filename="Output", ustring1="x", ustring2="y", ustring1="z", Umin1=-.1, Umax1=.1, Umin2=-.1, Umax2=.1, Umin3=-.1, Umax3=.1)
*
* %P
* INPUT PARAMETERS:
*
* Umin1: []             Minimum U1 to detect
* Umax1: []             Maximum U1 to detect
* nU1: [1]              Number of U1 channels
* Umin2: []             Minimum U1 to detect
* Umax2: []             Maximum U1 to detect
* nU2: [1]              Number of U1 channels
* Umin3: []             Minimum U3 to detect
* Umax3: []             Maximum U3 to detect
* nU3: [1]              Number of U3 channels
* filename: [string]    Name of file in which to store the detector image
* restore_neutron: [1]  If set, the monitor does not influence the neutron state
* uid1: [1]             Integer index of uservar to be monitored. Overrides ustring1.
* uid2: [1]             Integer index of uservar to be monitored. Overrides ustring2.
* uid3: [1]             Integer index of uservar to be monitored. Overrides ustring3.
* ustring1: [string]    Name of variable U1 (user or neutron state parameter as a string) to be monitored.
* ustring2: [string]    Name of variable U2 (user or neutron state parameter as a string) to be monitored.
* ustring3: [string]    Name of variable U3 (user or neutron state parameter as a string) to be monitored.
* signal: [string]      Name of variable to be used as an additive signal to be monitored. Default is intensity.
* nowritefile: [1]      Flag to indicate if monitor should not save any data.
*
* CALCULATED PARAMETERS:
*
* U_N: []               Array of neutron counts
* U_p: []               Array of neutron weight counts
* U_p2: []              Array of second moments
*
* %E
*******************************************************************************/
DEFINE COMPONENT Flex_monitor_3D



SETTING PARAMETERS (int nU1=20, int nU2=20, int nU3=20, string filename=0,
 		    Umin1, Umax1, uid1=-1, string ustring1="", 
		    Umin2, Umax2, uid2=-1, string ustring2="", 
		    Umin3, Umax3, uid3=-1, string ustring3="", 
		    int restore_neutron=0, string signal="p", int nowritefile=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

DECLARE
%{
  DArray3d U_N;
  DArray3d U_p;
  DArray3d U_p2;

  char username1[128];
  char username2[128];
  char username3[128];
  char signalname[128];
%}

INITIALIZE
%{

  U_N =  create_darr3d(nU3,nU1,nU2);
  U_p =  create_darr3d(nU3,nU1,nU2);
  U_p2 = create_darr3d(nU3,nU1,nU2);

  if(uid1!=-1){
    snprintf(username1,127,"uservar%d",uid1);
  }else{
    snprintf(username1,127,"%s",ustring1);
  }
  if(uid2!=-1){
    snprintf(username2,127,"uservar%d",uid2);
  }else{
    snprintf(username2,127,"%s",ustring2);
  }
  if(uid3!=-1){
    snprintf(username3,127,"uservar%d",uid3);
  }else{
    snprintf(username3,127,"%s",ustring3);
  }
  snprintf(signalname,127,"%s",signal);

  // Use instance name for monitor output if no input was given
  if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}

TRACE
%{
  double U1,U2,U3;
  int suc1,suc2,suc3,suc4;
  if(uid1!=-1){
    U1 = particle_getuservar_byid(_particle,uid1,&suc1);
  }else{
    U1 = particle_getvar(_particle,ustring1,&suc1);
  }
  if(uid2!=-1){
    U2 = particle_getuservar_byid(_particle,uid2,&suc2);
  }else{
    U2 = particle_getvar(_particle,ustring2,&suc2);
  }
  if(uid3!=-1){
    U3 = particle_getuservar_byid(_particle,uid3,&suc3);
  }else{
    U3 = particle_getvar(_particle,ustring3,&suc3);
  }
  
  int i = floor((U1-Umin1)*nU1/(Umax1-Umin1));
  int j = floor((U2-Umin2)*nU2/(Umax2-Umin2));
  int k = floor((U3-Umin3)*nU3/(Umax3-Umin3));
  if(!suc1 && i >= 0 && i < nU1)
    {
      if(!suc2 && j >= 0 && j < nU2)
	{
	  if(!suc3 && k >= 0 && k < nU3)
	    {
	      double pp=particle_getvar(_particle,signal,&suc4);
	      double p2 = pp*pp;
              #pragma acc atomic
	      U_N[k][i][j] = U_N[k][i][j] +1;
              #pragma acc atomic
	      U_p[k][i][j] = U_p[k][i][j] + pp;
              #pragma acc atomic
	      U_p2[k][i][j] = U_p2[k][i][j] + p2;
	      SCATTER;
	    }
	}
    }
  
  if (restore_neutron) {
    RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
  }
%}

SAVE
%{
  if (!nowritefile) {
    int k;
    char filename_k[256];
    char label_k[128];
    for(k=0; k<nU3; k++) {
      sprintf(filename_k,"%s_%i",filename,k);
      sprintf(label_k,"Flex monitor 3D slice %i of %i",k,nU3);
      DETECTOR_OUT_2D(
        "Flex monitor 3D",
        username1, username2,
        Umin1, Umax1, Umin2, Umax2, nU1, nU2,
        &U_N[k][0][0],&U_p[k][0][0],&U_p2[k][0][0],
        filename_k);
    }
  }
%}

FINALLY
%{
  destroy_darr3d(U_N);
  destroy_darr3d(U_p);
  destroy_darr3d(U_p2);
%}

MCDISPLAY
%{
%}

END