1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Sqw_monitor
*
* %I
* Written by: Peter Willendrup
* Date: November, 2020
* Origin: DTU
*
* Monitor outputting S(q,w)
* %D
*
* The assumption is that the "current" neutron represents the final state, whereas the incoming state
* is found by restoring the neutron state "index" components earlier.
*
* Example: Sqw_monitor(filename="output", Emin=0,Emax=5,nE=11,nq=100,nqb=100,qmin=0,qmax=1,index=-2)
* AT (0,0,0) RELATIVE sample
*
* %P
* INPUT PARAMETERS:
*
* radius: [m] Cylinder radius (optional)
* yheight: [m] Cylinder height (optional)
* qmin: [AA^-1] Defines interval (qmin,qmax) where monitor measures in nq bins
* qmax: [AA^-1] Defines interval (qmin,qmax) where monitor measures in nq bins
* nq: [int] Number of bins in q
* Emin: [meV] Defines the energy-transfer [Emin,Emax] window to monitor in nE bins
* Emax: [meV] Defines the energy-transfer [Emax,Emax] window to monitor in nE bins
* nE: [int] Number of energy slices
* vix: [string] Points to instrument-level USERVAR for reading an earlier x-velocity
* viy: [string] Points to instrument-level USERVAR for reading an earlier y-velocity
* viz: [string] Points to instrument-level USERVAR for reading an earlier z-velocity
* filename: [string] Base filename to use, nE+1 files will be output
* nowritefile: [1] If set, monitor will skip writing to disk
*
* CALCULATED PARAMETERS:
*
* M_N: [] 2D array of neutron counts
* M_p: [] 2D array of neutron weight counts
* N_p2: [] 2D array of second moments
* M_Ns: [] 2D array of neutron counts
* M_ps: [] 2D array of neutron weight counts
* N_p2s: [] 2D array of second moments
*
* %E
*******************************************************************************/
DEFINE COMPONENT Sqw_monitor
SETTING PARAMETERS (qmin=0,qmax=2,Emin=0,Emax=5,int nq=90, int nE=90, string filename=0, int nowritefile=0, string vix="", string viy="", string viz="", radius=0, yheight=0)
DECLARE
%{
DArray2d M_N;
DArray2d M_p;
DArray2d M_p2;
double dE;
%}
INITIALIZE
%{
/* Make checks for limits on qa, qb, w grid */
M_N=create_darr2d(nE,nq);
M_p=create_darr2d(nE,nq);
M_p2=create_darr2d(nE,nq);
dE=(Emax-Emin)/(1.0*nE-1);
// Use instance name for monitor output if no input was given
if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}
TRACE
%{
int i,j;
double rvx,rvy,rvz;
double Ei,Ef,E,Ki,Kf;
double qx,qy,qz;
double q,qq;
double kix,kiy,kiz;
double kfx,kfy,kfz;
double t0,t1;
double phi;
int detect=1;
int fail;
rvx = particle_getvar(_particle,vix,&fail); if(fail) rvx=0;
rvy = particle_getvar(_particle,viy,&fail); if(fail) rvy=0;
rvz = particle_getvar(_particle,viz,&fail); if(fail) rvz=0;
/* If initial state is with v=(0,0,0), detect nothing */
if (!(rvx==0 && rvy==0 && rvz==0)) {
Ei = VS2E*(rvx*rvx + rvy*rvy + rvz*rvz);
Ef = VS2E*( vx*vx + vy*vy + vz*vz);
E=Ef-Ei;
/* calculate k vectors and momentum transfer*/
kix=rvx;
kiy=rvy;
kiz=rvz;
kfx=vx;
kfy=vy;
kfz=vz;
NORM(kix, kiy, kiz);
NORM(kfx, kfy, kfz);
/* K-vector lengths */
Ki=V2K*sqrt((rvx*rvx)+(rvy*rvy)+(rvz*rvz));
Kf=V2K*sqrt((vx*vx)+(vy*vy)+(vz*vz));
kix=Ki*kix; kiy=Ki*kiy; kiz=Ki*kiz;
kfx=Kf*kfx; kfy=Kf*kfy; kfz=Kf*kfz;
qx=kfx-kix;
qy=kfy-kiy;
qz=kfz-kiz;
qq = sqrt(qx*qx+qy*qy+qz*qz);
/* Check if we should detect or not */
if (detect) {
if (radius && yheight) {
if (cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight) == 1) {
if (t0<0 && t1>0) {
PROP_DT(t1);
} else {
detect=0;
}
} else {
detect=0;
}
}
}
/* Check if we are within the selected q/e range */
if (detect && qq <= qmax && qq>=qmin && E<= Emax && E>=Emin) {
i = floor((qq - qmin)*nq/(qmax - qmin));
j = floor((E - Emin)*nE/(Emax - Emin));
double p2 = p*p;
#pragma acc atomic
M_N[i][j] = M_N[i][j] + 1 ;
#pragma acc atomic
M_p[i][j] = M_p[i][j] + p;
#pragma acc atomic
M_p2[i][j] = M_p2[i][j] + p2;
SCATTER;
}
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
}
%}
SAVE
%{
if (!nowritefile) {
DETECTOR_OUT_2D(
"q vs E monitor",
"q [AA^-1]",
"E [meV]",
qmin, qmax, Emin, Emax,
nq, nE,
&M_N[0][0],&M_p[0][0],&M_p2[0][0],
filename);
}
%}
FINALLY %{
destroy_darr2d(M_N);
destroy_darr2d(M_p);
destroy_darr2d(M_p2);
%}
MCDISPLAY
%{
%}
END
|