File: Beam_spy.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (197 lines) | stat: -rw-r--r-- 4,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Beam_spy
*
* %I
*
* Written by: E. Farhi
* Date: Nov 2005
* Version: $Revision$
* Release: McStas 1.9
* Origin: Risoe
*
* Beam analyzer for previous component
*
* %D
* This component displays informations about the beam at the previous component
* position. No data file is produced.
* It behaves as the Monitor component, but No propagation to the Beam_spy is
* performed, and all events are analyzed.
* The component should be located at the same position as the previous one.
*
* %P
* Input parameters:
*
* %L
* Monitor component
* %E
*******************************************************************************/

DEFINE COMPONENT Beam_spy

SETTING PARAMETERS ()

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
  double n_neutrons;
  double n_neutrons_p;
  double n_neutrons_p2;

  double mean_x;
  double mean_y;
  double mean_z;

  double mean_vx;
  double mean_vy;
  double mean_vz;

  double mean_dx;
  double mean_dy;
  double mean_dz;

  double mean_t;
  double mean_v;

  double min_x;
  double min_y;
  double min_z;

  double max_x;
  double max_y;
  double max_z;

  double min_vx;
  double min_vy;
  double min_vz;

  double max_vx;
  double max_vy;
  double max_vz;
%}

INITIALIZE
%{
  n_neutrons=0;
  n_neutrons_p=0;
  n_neutrons_p2=0;

  mean_x=0;
  mean_y=0;
  mean_z=0;

  mean_vx=0;
  mean_vy=0;
  mean_vz=0;

  mean_dx=0;
  mean_dy=0;
  mean_dz=0;

  mean_t=0;
  mean_v=0;

  min_x=FLT_MAX;
  min_y=FLT_MAX;
  min_z=FLT_MAX;

  max_x=-FLT_MAX;
  max_y=-FLT_MAX;
  max_z=-FLT_MAX;

  min_vx=FLT_MAX;
  min_vy=FLT_MAX;
  min_vz=FLT_MAX;

  max_vx=-FLT_MAX;
  max_vy=-FLT_MAX;
  max_vz=-FLT_MAX;
%}

TRACE
%{
  double v;

  mean_x  += p*x;  mean_y  += p*y;  mean_z  += p*z;
  mean_vx += p*vx; mean_vy += p*vy; mean_vz += p*vz;
  mean_t  += p*t;
  v = sqrt(vx*vx+vy*vy+vz*vz);
  if (v)
    { mean_dx += p*fabs(vx/v); mean_dy += p*fabs(vy/v); mean_dz += p*fabs(vz/v); mean_v += p*v; }
  if (x  < min_x)  min_x  = x;
  if (y  < min_y)  min_y  = y;
  if (z  < min_z)  min_z  = z;
  if (vx < min_vx) min_vx = vx;
  if (vy < min_vy) min_vy = vy;
  if (vz < min_vz) min_vz = vz;
  if (x  > max_x)  max_x  = x;
  if (y  > max_y)  max_y  = y;
  if (z  > max_z)  max_z  = z;
  if (vx > max_vx) max_vx = vx;
  if (vy > max_vy) max_vy = vy;
  if (vz > max_vz) max_vz = vz;
  n_neutrons++;
  n_neutrons_p  += p;
  n_neutrons_p2 += p*p;
%}

SAVE
%{
  double mean_k, mean_w=0, mean_L=0;
  double smean_vx, smean_vy, smean_vz, smean_dx, smean_dy, smean_dz;
  double smean_x, smean_y, smean_z, smean_t, smean_v;
  Coords c;

  c = POS_A_CURRENT_COMP;
  /* display statitics */
  smean_x  = mean_x  / n_neutrons_p;
  smean_y  = mean_y  / n_neutrons_p;
  smean_z  = mean_z  / n_neutrons_p;
  smean_vx = mean_vx / n_neutrons_p;
  smean_vy = mean_vy / n_neutrons_p;
  smean_vz = mean_vz / n_neutrons_p;
  smean_dx = mean_dx / n_neutrons_p;
  smean_dy = mean_dy / n_neutrons_p;
  smean_dz = mean_dz / n_neutrons_p;
  smean_t  = mean_t  / n_neutrons_p;
  smean_v  = mean_v  / n_neutrons_p;
  /* now estimates total ncount */

  mean_k = V2K*smean_v;
  if (mean_k) mean_L = 2*PI/mean_k;
  mean_w = VS2E*smean_v*smean_v;
  printf("Beam analysis for Component preceeding %s\n", NAME_CURRENT_COMP);
  printf("Absolute position AT (%g, %g, %g)\n", c.x, c.y, c.z);

  printf("  Beam size (full width in [m]):      ");
  printf("    dX=%g dY=%g dZ=%g\n", max_x-min_x, max_y-min_y, max_z-min_z);
  printf("  Beam center (in [m]):               ");
  printf("    X0=%g Y0=%g Z0=%g\n", smean_x, smean_y, smean_z);
  printf("  Beam velocity divergence (half width in [deg]):");
  printf("  dVx=%g dVy=%g dVz=%g\n",
    atan(smean_dx)*RAD2DEG,
    atan(smean_dy)*RAD2DEG,
    atan(smean_dz)*RAD2DEG);
  printf("  Beam speed (in [m/s]):                ");
  printf("  Vx=%g Vy=%g Vz=%g\n", smean_vx, smean_vy, smean_vz);
  printf("  Beam mean energy:\n");
  printf("    speed=%g [m/s] energy=%g [meV]\n    wavelength=%g [Angs] wavevector=%g [Angs-1]\n", smean_v, mean_w, mean_L, mean_k);
  printf("  Mean arrival time: t=%g [s]\n", smean_t);
  DETECTOR_OUT_0D("Beam analyzer " NAME_CURRENT_COMP, n_neutrons, n_neutrons_p, n_neutrons_p2);
%}

MCDISPLAY
%{
  /* A bit ugly; hard-coded dimensions. */
  
  line(0,0,0,0.2,0,0);
  line(0,0,0,0,0.2,0);
  line(0,0,0,0,0,0.2);
%}

END