File: Virtual_mcnp_input.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (574 lines) | stat: -rw-r--r-- 19,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2006, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Virtual_mcnp_input.comp
*
* %I
* Written by: <a href="mailto:hennanec@ensimag.fr">Chama Hennane</a> and E. Farhi
* Date: June 28th, 2006
* Origin: <a href="http://www.ill.fr/">ILL</a>
* Modified by: EF, July 25th 2006: bug fixes.
*
* This component uses a filename of recorded neutrons from the reactor monte carlo
* code MCNP as a source of particles.
*
* %D
* This component generates neutron events from a filename created using the
* MCNP Monte Carlo code for nuclear reactors. It is used to
* calculate flux exiting from hot or cold neutron sources.
* Neutron position and velocity is set from the filename. The neutron time is
* left at zero.
*
* Note that axes orientation may be different between MCNP and McStas.
* The component has the ability to center and orient the neutron beam to the Z-axis.
* It also may change the coordinate system from the MCNP frame to the McStas one.
* The verbose mode is highly recommended as it displays lots of useful informations.
* To obtain absolute intensity, set 'intensity' and 'nps' parameters.
* The source total intensity is 1.054e18 for LLB/Saclay (14 MW) and 4.28e18 for
* ILL/Grenoble (58 MW).
*
* Format of MCNP events are :
*
*   position_X position_Y position_Z dir_X dir_Y dir_Z Energy Weight Time
*
* energy is in Mega eV, time in shakes (1e-8 s),
* positions are in cm and the direction vector is normalized to 1.
*
* %BUGS
* We recommend NOT to use parallel execution (MPI) with this component. If you
* need to, set parameter 'smooth=1'.
*
* EXAMPLE:
* To generate PTRAC files using MCNP/MCNPX, add at the end of your input file:
*   f1:n          2001              // tally
*   (...)
*   ptrac         filename = asc
*                 max  = -1000000   // number of neutrons to generate and stop
*                 write = all
*                 event = sur
*                 filter = 2001,jsu // surface tally id
* To create a 'source' from a MCNP simulation event file for the ILL:
* COMPONENT source = Virtual_mcnp_input(
*    filename = "H10p", intensity=4.28e18, nps=11328982,
*    verbose = 1, autocenter="translate rotate rescale")
*
* %P
* INPUT PARAMETERS
* filename: [str]    Name of the MCNP PTRAC neutron input file. Empty string "" unactivates component
* repeat_count: [1]  Number of times the source must be generated. 0 unactivates the component
* verbose: [0|1]     Displays additional informations if set to 1
* intensity: [n/s]   Intensity multiplication factor
* nps: [1]           Number of total events shot by MCNP to generate the PTRAC as indicated at the end of the MCNP 'o' file as 'source particle weight for summary table normalization' or alternatively 'nps = '.
* autocenter: [str]  String which may contain following keywords. "translate" or "center"  to center the beam area AT (0,0,0) "rotate"    or "orient"  to center the beam velocity along Z "change axes"            to change coordinate system definition "rescale"                to adapt intensity to abs. units. with factor intensity/nps. Other words are ignored.
* surface_id: [1]    Index of the emitting MCNP surface to use. -1 for all.
* MCNP_ANALYSE: [1]  Number of neutron events to read for file pre-analysis. Use 0 to analyze them all.
* smooth: [0/1]      Smooth sparsed event files for file repetitions.
*
* OUTPUT PARAMETERS
* nl: [long]         nb of lines in header
* mean_x: [m]        source center coordinates
* mean_y: [m]        source center coordinates
* mean_z: [m]        source center coordinates
* angle2z: [rad]     rotation angle required to orient beam along Z axis
*
* %L
* <a href="http://mcnp-green.lanl.gov/index.html">MCNP</a>
* %L
* MCNP -- A General Monte Carlo N-Particle Transport Code, Version 5, Volume II: User's Guide, p177
*
* %E
*
*******************************************************************************/

DEFINE COMPONENT Virtual_mcnp_input

SETTING PARAMETERS (string filename=0, string autocenter=0, repeat_count=1, verbose=0, intensity=0,MCNP_ANALYSE=10000,
int surface_id=-1,
nps=0,smooth=1)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
#ifndef MCNP_INPUT_DEFS
#define MCNP_INPUT_DEFS
/* number of neutron events to read for file pre-analysis */

#include <sys/stat.h>

/* mcnp_get_particle: read a neutron event from the MCNP PTRAC file */
int mcnp_get_particle(FILE *hfile,float * tableau,int *old_surface,int *surface_id,int *informed_event,int *informed_surface)
{
    char *c;
    int exit_flag=0;
    float arg1=-1;
    float arg2=-1;
    float arg3=-1;
    float arg4=-1;
    float arg5=-1;
    float arg6=-1;
    float arg7=-1;
    float arg8=-1;
    float arg9=-1;
    int count=-1;
    int new_surface=-1;
    char str[1024];
    int serr=0;
    if (!tableau) exit(fprintf(stderr, "MCNP_input: Error in mem alloc (mcnp_get_particle).\n"));

    c=fgets(str,1024,hfile);

    while (c!=NULL) {
      count=sscanf(str,"%e %e %e %e %e %e %e %e %e",&arg1,&arg2,&arg3,&arg4,&arg5,&arg6,&arg7,&arg8,&arg9);

      if (count==2) { /* test number of numerical values read from line */
        if(arg2!=3000 && arg2!=9000){
          printf("Warning: Unknown event  %g in current file\n",arg2);
        } else if (informed_event)
          *informed_event = arg2;
      } else if (count==7 || count==6) {
        new_surface=arg3;

        if (new_surface!=*surface_id && *surface_id!=-1) serr=1;
        else
          *informed_surface=new_surface;

        if (*old_surface!=-1 && !*informed_surface && new_surface!=*old_surface) {
          printf("Warning: Different surface IDs in current file: previous=%i current=%i\n", *old_surface, new_surface);
        }

        *old_surface     =new_surface;

      } else if (count==9 && (!informed_surface || *informed_surface)
          && (!informed_event || (informed_event && (*informed_event==3000 || *informed_event==9000)))) {
        if(serr==0){
          tableau[0]=arg1;
          tableau[1]=arg2;
          tableau[2]=arg3;
          tableau[3]=arg4;
          tableau[4]=arg5;
          tableau[5]=arg6;
          tableau[6]=arg7;
          tableau[7]=arg8;
          tableau[8]=arg9;
          return (exit_flag);
        }
        serr=0;
      } else {
        if (informed_event  && *informed_event) {
          exit_flag=1;
          printf("MCNP_input: Warning: skip line %s\n", str);
          return (exit_flag);
        }
      }
      c=fgets(str,1024,hfile);

    }
    exit_flag=1;
    return (exit_flag);
}

/* mcnp_create_neutron:
   function that creates an event
   and assigns neutron parameters.
   Warning: mcnp Coord system (x y z) = (-x z y)
 */
int mcnp_create_neutron(FILE *hfile, double *x,double *y,double *z,
                                 double *vx, double *vy, double *vz,
                                 double *t,
                                 double *sx, double *sy, double *sz,
                                 double *p,int *old_surface,int *surface_id,int *informed_event,
                                 int *informed_surface)
{
  double Mev2Joule=1.602e-13;
  double speed;
  int    exit_flag=0, ifield=0;
  float field[9];
  if(mcnp_get_particle(hfile,field,old_surface,surface_id,informed_event,informed_surface)) { exit_flag=1; }
  else {
    speed=sqrt(2.* field[6]*Mev2Joule/MNEUTRON);
    *x=field[0]/100.0;
    *y=field[1]/100.0;
    *z=field[2]/100.0;
    *vx=field[3]*speed;
    *vy=field[4]*speed;
    *vz=field[5]*speed;
    *p=field[7];
    *sx=1.;*sy=*sz=0;
    *t=field[8]*1e-8;
    // now change axis system
    double tx, ty, tz;
    tx=*x;  ty=*y;  tz=*z;   *x=-ty;  *y=-tz;  *z=tx;
    tx=*vx; ty=*vy; tz=*vz; *vx=-ty; *vy=-tz; *vz=tx;
  }
  return (exit_flag);

}


/* mcnp_get_header:
   function that gets/allocate header lines until the MCNP start of data
 */
char *mcnp_get_header(FILE *hfile)
{
  int i;
  char *head=NULL;
  char buffer[1024];
  char *c=NULL;

  c=fgets(buffer,1024,hfile);
  head=malloc(2*1024+1);
  if (!head) exit(fprintf(stderr, "MCNP_input: Error in mem alloc (mcnp_get_header).\n"));
  strcpy(head,"");
  c=fgets(buffer,1024,hfile);
  strcat(head, buffer);
  c=fgets(buffer,1024,hfile);
  strcat(head, buffer);
  /* skip 6 lines */
  for (i=0; i<=6; i++) c=fgets(buffer,1024,hfile);

  return head;
}

#endif

%}

DECLARE
%{
  int rep;                    /* Neutron repeat count */
  int repeat_cnt;             /* Repeat count, MPI taken into account */
  FILE *hfile;                /* Neutron input file handle */


  char do_rotate, do_translate;
  double mean_x, mean_y, mean_z;
  double bx,by,bz;
  double angle2z;
  long begin_neutrons;
  int old_surface;
  int surface;
  int informed_event;
  int informed_surface;
  double n_count_extrapolated;
  double min_x, min_y, min_z;
  double max_x, max_y, max_z;
  double min_vx, min_vy, min_vz;
  double max_vx, max_vy, max_vz;
  double mean_dx, mean_dy, mean_dz;
%}

INITIALIZE
%{
  rep=1;
  do_rotate=0;
  do_translate=0;
  mean_x=0;
  mean_y=0;
  mean_z=0;
  angle2z=0;
  begin_neutrons=0;
  old_surface=-1;
  informed_event=0;
  informed_surface=0;
  n_count_extrapolated=0;
  min_x=FLT_MAX;
  min_y=FLT_MAX;
  min_z=FLT_MAX;
  max_x=-FLT_MAX;
  max_y=-FLT_MAX;
  max_z=-FLT_MAX;
  min_vx=FLT_MAX;
  min_vy=FLT_MAX;
  min_vz=FLT_MAX;
  max_vx=-FLT_MAX;
  max_vy=-FLT_MAX;
  max_vz=-FLT_MAX;
  mean_dx=0;
  mean_dy=0;
  mean_dz=0;


  char  exit_flag=0;  /* set to 1 if end of simulation */

  double mean_vx=0, mean_vy=0, mean_vz=0, mean_v=0;

  double n_neutrons=0;
  double n_neutrons_p=0;
  long   filesize  =0;
  char *head=NULL;                    /*MCNP header*/

  struct stat stfile;
  surface=surface_id;
  /* Open neutron input file. */
  /* (If empty file given, present warning in case of verbose, perform nothing) */

  if (!filename || !strcmp(filename,"") || !strcmp(filename,"0")  || !strcmp(filename,"NULL"))
    exit(printf("MCNP_input: %s: Empty file given, doing nothing!. Stop.\n", NAME_CURRENT_COMP));


  if (filename && strlen(filename) && strcmp(filename, "NULL") && strcmp(filename, "0")) {
    stat(filename,&stfile);
    filesize = stfile.st_size;
    hfile = fopen(filename, "r");
  }

  if(!hfile)
  {
    exit(printf("MCNP_input: %s: Error: Cannot open input file %s.\n", NAME_CURRENT_COMP, filename));
  } else if (verbose)
    printf("MCNP_input: %s: opening MCNP/PTRAC file '%s'\n", NAME_CURRENT_COMP, filename);

  head = mcnp_get_header(hfile); /*  and reset to filename start */

  begin_neutrons = ftell(hfile);

  if (verbose) fprintf(stdout, "%s\n", head);
  if (head)  free(head); head=NULL;
  if (verbose) {
    printf("Analysing MCNP file %s (", filename);
    if (MCNP_ANALYSE) printf("%g events)\n", MCNP_ANALYSE);
    else printf("all events)\n");
  }

  /* analyse MCNP file: count neutrons, get beam center and mean speed
   * do that for the first 1e4 neutrons, and extrapolates to file size */

  while (!exit_flag && (n_neutrons <= MCNP_ANALYSE || !MCNP_ANALYSE)) {
    double x,y,z,vx,vy,vz,t,p,sx,sy,sz;
    if (mcnp_create_neutron(
      hfile,&x,&y,&z,&vx,&vy,&vz,&t,&sx,&sy,&sz,&p,
      &old_surface,&surface,&informed_event,&informed_surface)) {
      /*END OF FILE*/
      fprintf(stderr, "MCNP_input: %s: Cannot get neutron %g : Error or End of File reached .\n",NAME_CURRENT_COMP,n_neutrons+1);
      exit_flag = 1;
    } else {
      double v;
      v = sqrt(vx*vx+vy*vy+vz*vz);
      mean_x  += p*x;  mean_y  += p*y;  mean_z  += p*z;
      mean_vx += p*vx; mean_vy += p*vy; mean_vz += p*vz; mean_v += p*v;
      angle2z += p*vz/v;
      if (v) {
        mean_dx += p*fabs(vx/v); mean_dy += p*fabs(vy/v); mean_dz += p*fabs(vz/v); }
      if (x  < min_x)  min_x  = x;
      if (y  < min_y)  min_y  = y;
      if (z  < min_z)  min_z  = z;
      if (vx < min_vx) min_vx = vx;
      if (vy < min_vy) min_vy = vy;
      if (vz < min_vz) min_vz = z;
      if (x  > max_x)  max_x  = x;
      if (y  > max_y)  max_y  = y;
      if (z  > max_z)  max_z  = z;
      if (vx > max_vx) max_vx = vx;
      if (vy > max_vy) max_vy = vy;
      if (vz > max_vz) max_vz = z;
      n_neutrons++;
      n_neutrons_p += p;
    }
  } /* end while */

  if (n_neutrons) {
    long   end_analyse=0;
    double cx,cy,cz;
    end_analyse = ftell(hfile);
    mean_x  /= n_neutrons_p;
    mean_y  /= n_neutrons_p;
    mean_z  /= n_neutrons_p;
    mean_vx /= n_neutrons_p;
    mean_vy /= n_neutrons_p;
    mean_vz /= n_neutrons_p;
    mean_dx /= n_neutrons_p;
    mean_dy /= n_neutrons_p;
    mean_dz /= n_neutrons_p;
    mean_v  /= n_neutrons_p;
    angle2z /= n_neutrons_p;
    n_count_extrapolated = n_neutrons*(filesize-begin_neutrons)/(end_analyse - begin_neutrons);
    if (verbose) {
      double mean_k, mean_w=0, mean_L=0;

      mean_k = V2K*mean_v;
      if (mean_k) mean_L = 2*PI/mean_k;
      mean_w = VS2E*mean_v*mean_v;
      printf("MCNP file %s\nContains %s%g neutrons from surface %i with event %i\n",
             filename, MCNP_ANALYSE ? "about " : "",
             n_count_extrapolated, informed_surface, informed_event);
      if (n_count_extrapolated > mcget_ncount())
        printf("    (will use only %.3g %% of file)\n", 100.0*mcget_ncount()/n_count_extrapolated);
      else
        printf("    (limiting simulation to %g neutrons)\n", n_count_extrapolated*repeat_count);
      printf("  Source size (full width in [m]):      ");
      printf("    dX=%g dY=%g dZ=%g\n", max_x-min_x, max_y-min_y, max_z-min_z);
      printf("  Source center (in [m]):               ");
      printf("    X0=%g Y0=%g Z0=%g\n", mean_x, mean_y, mean_z);
      printf("  Beam divergence (full width in [deg]):");
      printf("    dVx=%g dVy=%g dVz=%g\n",
             atan(mean_dx)*RAD2DEG,
             atan(mean_dy)*RAD2DEG,
             atan(mean_dz)*RAD2DEG);
      printf("  Beam speed (in [m/s]):                ");
      printf("    Vx=%g Vy=%g Vz=%g\n", mean_vx, mean_vy, mean_vz);
      printf("  Beam mean energy:\n");
      printf("    speed=%g [m/s] energy=%g [meV]\n    wavelength=%g [Angs] wavevector=%g [Angs-1]\n", mean_v, mean_w, mean_L, mean_k);
    }

    if (autocenter) {
      if (strstr(autocenter, "rotate") || strstr(autocenter, "orient")) {
        do_rotate    = 1;
      }
      if (strstr(autocenter, "translate") || strstr(autocenter, "center"))
        do_translate = 1;
      if (strstr(autocenter, "rescale") && intensity)
        printf("* Automatic Normalisation factor Intensity/nps = %g [n/s]\n",
          intensity/nps);
    }
    /* compute the rotation matrix to make mean_v along the Z-axis */
    /* first normalize mean velocity (will be Z axis): c=v/|v| */
    cx = mean_vx/mean_v; cy = mean_vy/mean_v; cz = mean_vz/mean_v;

    /* compute angle to rotate in order to come back to Z axis */
    angle2z = acos(angle2z); /* in RAD */
    /* get rotation axis b=c x [0 0 1] */
    if (angle2z) {
    vec_prod(bx,by,bz, cx,cy,cz, 0,0,1);
    } else { /* already well oriented: nothing to do */
    do_rotate = 0;
    }
    if (verbose && (do_rotate || do_translate || smooth)) {
      printf("* Beam will be ");
      if (do_translate) printf("translated (in position) ");
      if (do_rotate)    printf("rotated (%.3g [deg] to Z-axis) ", angle2z*RAD2DEG);
      if (smooth)       printf("smoothed ");
      printf("\n");
    }

  } else {
    exit(printf("MCNP_input: %s: Error: file %s neutrons does not contain any neutron. \n",NAME_CURRENT_COMP, filename));
  }

  /* reposition at start of filename (data start) */
  if (fseek(hfile, begin_neutrons,SEEK_SET)) {
    fprintf(stderr, "MCNP_input: %s: Error: Can not reset MCNP file (fseek error at analyse). \n",NAME_CURRENT_COMP);
    exit_flag = 1;
  }

#if defined (USE_MPI)
  if (!smooth && mpi_node_count > 1) {
    if (verbose)
  printf("MCNP_input: %s: smoothing (smooth=1) is recommended when running MPI execution.\n", NAME_CURRENT_COMP);
  }
#endif

  double min_dv=fabs(max_vx-min_vx);
  if (min_dv > fabs(max_vy-min_vy)) min_dv = fabs(max_vy-min_vy);
  if (min_dv > fabs(max_vz-min_vz)) min_dv = fabs(max_vz-min_vz);
  min_vx = min_dv;

  repeat_cnt = repeat_count;
#if defined (USE_MPI)
  repeat_cnt = ceil(1.0*repeat_cnt/mpi_node_count);
#endif

  informed_event=informed_surface=0; /* reset ids so that new search in TRACE starts from scratch */

%}

TRACE
%{
  char exit_flag=0;  /* set to 1 if end of simulation */
  int  result_read=1;

  while(!exit_flag) {
    if (mcnp_create_neutron(hfile,&x,&y,&z,&vx,&vy,&vz,&t,&sx,&sy,&sz,&p,&old_surface,&surface,&informed_event,&informed_surface)) {
      result_read=EOF;
      exit_flag = 1;
    } else {
      if (do_translate) { /* translate the beam to origin */
        x -= mean_x; y -= mean_y; z -= mean_z;
      }
      if (do_rotate) {    /* rotate the beam so that its main axis is along Z */
        double nvx, nvy, nvz;
        rotate(nvx,nvy,nvz, vx,vy,vz, angle2z, bx,by,bz);
        vx = nvx; vy=nvy; vz=nvz;
        rotate(nvx,nvy,nvz,  x, y, z, angle2z, bx,by,bz);
         x = nvx;  y=nvy;  z=nvz;
      }

      if (intensity && nps) p *= intensity/nps/repeat_cnt;
      SCATTER;
    }

#if defined (USE_MPI)
    if (smooth && n_count_extrapolated)
#else
    if (smooth && rep > 1 && n_count_extrapolated)
#endif
    {
      /* apply smmothing */
      x += randnorm()*(max_x-min_x)/n_count_extrapolated/2;
      y += randnorm()*(max_y-min_y)/n_count_extrapolated/2;
      z += randnorm()*(max_z-min_z)/n_count_extrapolated/2;
      vx += randnorm()*min_vx/n_count_extrapolated/2;
      vy += randnorm()*min_vx/n_count_extrapolated/2;
      vx += randnorm()*min_vx/n_count_extrapolated/2;
    }


    if (result_read==EOF) {  /* normal end of file */
      rep++;
      if (rep <= repeat_cnt) {
        /* reposition at start of file (data start) */
        int ret = fseek(hfile, begin_neutrons,SEEK_SET);
        if (ret) {
          fprintf(stderr, "MCNP_input: %s: Error: Can not repeat MCNP file (fseek error at repeat %d). \n",NAME_CURRENT_COMP, rep);
          exit_flag = 1;
        } else {
          if (verbose) printf("MCNP_input: %s: Start Neutron Number %ld (iteration %d)\n",NAME_CURRENT_COMP,begin_neutrons, rep);
          exit_flag=0;
        }
      }
      else exit_flag=1;
    }

    if (exit_flag) {
      if (verbose) printf("  Finishing simulation\n");
      mcset_ncount(mcget_run_num()); ABSORB;
    }
    SCATTER;
    break;
  #ifdef USE_MPI
    /* We always repeat by the number of nodes in an MPI run */
    p /= mpi_node_count;
  #endif
  } /* end while */
%}

FINALLY
%{
  if (filename && strlen(filename) && strcmp(filename,"0") && strcmp(filename,"NULL")) {
    if (hfile) fclose(hfile);
    if (verbose) {
      printf("MCNP_input: %s: file %s\n", NAME_CURRENT_COMP, filename);
      printf("                %g neutrons generated\n", (double)mcget_ncount());
    }
  }
%}

MCDISPLAY
%{
  /* a box and a line in the main beam direction */
  double nx=mean_x, ny=mean_y, nz=mean_z;
  double dx=mean_dx,dy=mean_dy,dz=mean_dz;
  if (do_translate) nx=ny=nz=0;
  if (do_rotate)    { dx=dy=0; dz=.1; }

  box(nx,ny,nz, max_x-min_x, max_y-min_y, max_z-min_z, 0, 0, 1, 0);
  line(     nx,ny,nz, dx,dy,dz);

%}


END