1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2002, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Collimator_radial
*
* %I
* Written by: Emmanuel Farhi <farhi@ill.fr>
* Date: July 2005
* Origin: ILL
*
* A radial Soller collimator.
*
* %D
* Radial Soller collimator with rectangular opening and specified length.
* The collimator is made of many rectangular channels stacked radially.
* Each channel is a set of transmitting layers (nslit), separated by an absorbing
* material (infinitely thin), the whole stuff is inside an absorbing housing.
*
* When specifying the number of channels (nchan), each channel has a total
* entrance width=radius*fabs(theta_max-theta_min)/nchan, but only the central
* portion 'xwidth' accepts neutrons. When xwidth=0, it is set to the full
* apperture so that all neutrons enter the channels (all walls are infinitely thin).
*
* When using zero as the number of channels (nchan), the collimator is continuous,
* whithout shadowing effect.
*
* The component should be positioned at the radius center.
* The component can be made oscillating (usual on diffractometers and TOF
* machines) with the 'roc' parameter.
* The neutron beam outside the collimator angular area is transmitted unaffected.
*
* When used as a focusing collimator, the focusing parameter should be set to 1.
*
* An example of a instrument that uses this collimator can be found in the SALSA instrument,
* in the example folder
*
* Example:
* Channelled radial collimator with shadow parts
* Collimator_radial(xwidth=0.015, yheight=.3, length=.35, divergence=40,transmission=1, theta_min=5, theta_max=165, nchan=128, radius=0.9)
* A continuous radial collimator
* Collimator_radial(yheight=.3, length=.35, divergence=40,transmission=1, theta_min=5, theta_max=165, radius=0.9)
*
* %P
* INPUT PARAMETERS:
*
* xwidth: [m] Soller window width, filled with nslit slits. Use 0 value for continuous collimator.
* yheight: [m] Collimator height. If yheight_inner is specified, then this is the outer cylinders height
* length: [m] Length/Distance between inner and outer slits.
* divergence: [min of arc] Divergence angle. May also be specified with the nslit parameter. A zero value unactivates component.
* theta_min: [deg] Minimum Theta angle for the radial setting.
* theta_max: [deg] Maximum Theta angle for the radial setting.
* nchan: [1] Number of Soller channels in the theta range. Use 0 value for continuous collimator.
* radius: [m] Radius of the collimator (to entry window).
*
* Optional parameters
* transmission: [1] Maximum transmission of Soller (0<=t<=1).
* nslit: [1] Number of blades composing each Soller. Overrides the divergence parameter.
* roc: [deg] Amplitude of oscillation of collimator. 0=fixed.
* verbose: [] Gives additional information.
* approx: [] Use Soller triangular transmission approximation.
* focusing: [1] When set allows you to use the collimators for focusing, rather than dispersing.
* yheight_inner [1] Defines the inner height of the collimator
*
* %E
*******************************************************************************/
DEFINE COMPONENT Collimator_radial
SETTING PARAMETERS (xwidth=0, yheight=.3, length=.35,
divergence=0,transmission=1,
theta_min=5, theta_max=165, nchan=0, radius=1.3, nslit=0,
roc=0, verbose=0, approx=0, focusing = 0, yheight_inner = 0)
DECLARE
%{
double width_of_slit;
double width_of_Soller;
double slit_theta;
%}
INITIALIZE
%{
width_of_slit=0;
width_of_Soller=0;
slit_theta=0;
if (radius <= 0)
exit(printf("Collimator_radial: %s: incorrect radius=%g\n", NAME_CURRENT_COMP, radius));
if (length <= 0)
exit(printf("Collimator_radial: %s: invalid collimator length=%g\n", NAME_CURRENT_COMP, length));
if (transmission <= 0 || transmission >1)
exit(printf("Collimator_radial: %s: invalid transmission=%g\n", NAME_CURRENT_COMP, transmission));
theta_max *= DEG2RAD;
theta_min *= DEG2RAD;
roc *= DEG2RAD;
divergence*= MIN2RAD;
if (xwidth && !nchan)
nchan = ceil(radius*fabs(theta_max-theta_min)/xwidth);
else if (!xwidth && nchan)
xwidth = radius*fabs(theta_max-theta_min)/nchan;
/* determine total width [m] of Soller channels, containing nslit in xwidth */
if (nchan) {
width_of_Soller = radius*fabs(theta_max-theta_min)/nchan;
}
else width_of_Soller = 0;
if (!nchan || !xwidth || xwidth > width_of_Soller)
nchan=xwidth=width_of_Soller=0; /* continuous collimator */
/* determine width [m] of slits */
if (divergence) {
width_of_slit = length*tan(divergence);
if (xwidth) /* Soller */
nslit = ceil(xwidth/width_of_slit);
else if (!nchan) /* continuous collimator */
nslit = ceil(radius*fabs(theta_max-theta_min)/width_of_slit);
} else {
if (!nchan && nslit) /* continuous collimator */
width_of_slit = radius*fabs(theta_max-theta_min)/nslit;
else if (nchan && nslit) /* Soller */
width_of_slit = xwidth/nslit;
divergence = atan2(width_of_slit,length);
}
if (nslit <= 0)
printf("Collimator_radial: %s: number of channels must be positive nslit=%g.\n"
"WARNING Specify alternatively divergence, xwidth and nchan.\n",
NAME_CURRENT_COMP, nslit);
if (verbose && nslit && width_of_slit) {
printf("Collimator_radial: %s: divergence %g [min] %s"
". Total opening [%g:%g] [deg]\n",
NAME_CURRENT_COMP, divergence*RAD2MIN,
(roc ? "oscillating" : ""),
theta_min*RAD2DEG, theta_max*RAD2DEG);
if (approx)
printf(" Using triangular approximation model");
else if (!nchan)
printf(" Using continuous model");
else
printf(" Using %i Soller channels of width %g [cm]",
(int)nchan, width_of_Soller*100);
printf(" with %i slits of width %g [mm] pitch %g [deg].\n",
(int)nslit, width_of_slit*1000, atan2(width_of_slit, radius)*RAD2DEG);
}
if (!yheight_inner) yheight_inner = yheight;
%}
TRACE
%{
double intersect=0;
double t0, t1, t2, t3;
if (width_of_slit && nslit) {
/* determine intersection with inner and outer cylinders */
intersect=cylinder_intersect(&t0,&t3,x,y,z,vx,vy,vz,radius,yheight_inner);
if (!intersect) ABSORB;
else if (t3 > t0 && !focusing) t0 = t3;
intersect=cylinder_intersect(&t1,&t2,x,y,z,vx,vy,vz,radius+length,yheight);
if (!intersect) ABSORB;
else if (t2 > t1 && !focusing) t1 = t2;
/* propagate/determine neutron position at ingoing cylinder */
if ((t0 > 0 && t1 > t0 && !focusing) || (t1 > 0 && t0 > t1 && focusing)) {
double input_chan=0;
double input_theta=0, output_theta=0;
double roc_theta=0;
double input_slit=0, output_slit=0;
if (!focusing) PROP_DT(t0);
if (focusing) PROP_DT(t1);
/* apply ROC oscillation with a linear random distribution */
if (roc) roc_theta = roc*randpm1()/2; else roc_theta=0;
/* angle on the initial relevant cylinder */
input_theta = atan2(x, z) + roc_theta;
/* check if we are within min/max collimator input bounds */
if (input_theta >= theta_min && input_theta <= theta_max) {
SCATTER;
/* input Soller channel index */
if (width_of_Soller) {
input_chan = radius*(input_theta-theta_min)/width_of_Soller;
input_chan = input_chan-floor(input_chan); /* position within Soller [0:1] */
/* check if we hit an absorbing housing (between Sollers): ABSORB
* total Soller aperture is width_of_Soller,
* containg a slit pack of aperture xwidth
*/
if (input_chan < (1-xwidth/width_of_Soller)/2
|| input_chan > (1+xwidth/width_of_Soller)/2) ABSORB;
}
/* determine input slit index */
input_slit = floor(input_theta*radius/width_of_slit);
} else /* neutron missed collimator input range */
input_theta=4*PI;
/* propagate to next cylinder */
if (!focusing) PROP_DT(t1-t0);
if (focusing) PROP_DT(t0-t1);
/* angle on the outgoing cylinder */
output_theta = atan2(x, z) + roc_theta;
/* check if we are within min/max collimator output bounds */
if (output_theta >= theta_min && output_theta <= theta_max) {
/* check if we come from sides: ABSORB */
if (input_theta > 2*PI) ABSORB; /* input_theta=4*PI when missed input */
if (approx) {
double phi=atan2(x, z)-atan2(vx, vz); /* difference between positional slit angle and velocity */
if (fabs(phi) > divergence)
ABSORB; /* get outside transmission */
else
p *= (1.0 - phi/divergence);
} else {
/* check if we have changed slit: ABSORB */
/* slits are considered radial so that their output size is:
width_of_slit*(radius+length)/radius and it turns out this the same exp as for input
*/
output_slit = floor(output_theta*radius/width_of_slit);
if (input_slit != output_slit) ABSORB;
}
SCATTER;
p *= transmission;
}
else if (focusing) ABSORB;
/* else neutron missed collimator output range*/
} /* else did not encounter collimator cylinders */
} /* if nslit */
%}
MCDISPLAY
%{
double Soller_theta;
double height_inner = yheight/2;
double height_outer = yheight_inner/2;
double theta1, theta2;
double x_in_l, z_in_l, x_in_r, z_in_r;
double x_out_l, z_out_l, x_out_r, z_out_r;
int i;
/* display collimator radial geometry:
in order to avoid too many lines, we shown main housing and channels
but no slit */
if (!nchan || nchan > 20) nchan=20;
if (nchan > 64) nchan=64;
Soller_theta=fabs(theta_max-theta_min)/nchan; /* angular width of Soller */
/* draw all channels, which also show housing */
for (i = 0; i < nchan; i++) {
theta1 = i*Soller_theta+theta_min;
theta2 = theta1+Soller_theta;
z_in_l = radius*cos(theta1);
x_in_l = radius*sin(theta1);
z_in_r = radius*cos(theta2);
x_in_r = radius*sin(theta2);
z_out_l = (radius+length)*cos(theta1);
x_out_l = (radius+length)*sin(theta1);
z_out_r = (radius+length)*cos(theta2);
x_out_r = (radius+length)*sin(theta2);
/* left side */
multiline(6,
x_in_l, -height_outer, z_in_l,
x_in_l, height_outer, z_in_l,
x_out_l, height_inner, z_out_l,
x_out_l,-height_inner, z_out_l,
x_in_l, -height_outer, z_in_l,
x_in_r, -height_outer, z_in_r);
/* left -> right lines */
line(x_in_l, height_outer, z_in_l, x_in_r, height_outer, z_in_r);
line(x_out_l, height_inner, z_out_l, x_out_r, height_inner, z_out_r);
line(x_out_l, -height_inner, z_out_l, x_out_r,-height_inner, z_out_r);
}
/* remaining bits */
theta1 = nchan*Soller_theta+theta_min;
z_in_l = radius*cos(theta1);
x_in_l = radius*sin(theta1);
z_out_l = (radius+length)*cos(theta1);
x_out_l = (radius+length)*sin(theta1);
multiline(5,
x_in_l, -height_outer, z_in_l,
x_in_l, height_outer, z_in_l,
x_out_l, height_inner, z_out_l,
x_out_l,-height_inner, z_out_l,
x_in_l, -height_outer, z_in_l);
%}
END
|