File: Guide_gravity.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (644 lines) | stat: -rw-r--r-- 26,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Guide_gravity
*
* %I
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: Aug 03 2001
* Origin: <a href="http://www.ill.fr">ILL (France)</a>.
* Modified by: E. Farhi, from Gravity_guide by nslit. Lefmann (buggy).
* Modified by: E. Farhi, focusing channels are now ok (Sept 4th, 2001).
* Modified by: E. Farhi, 2D channel array. Correct focus bug (Dec 14th 2002)
* Modified by: E. Farhi, Waviness+chamfers+nelements (Aug 19th 2003)
*
* Neutron straight guide with gravity. Can be channeled and focusing.
* Waviness may be specified, as well as side chamfers (on substrate).
*
* %D
* Models a rectangular straight guide tube centered on the Z axis, with
* gravitation handling. The entrance lies in the X-Y plane.
* The guide can be channeled (nslit,d,nhslit parameters). The guide coating
* specifications may be entered via different ways (global, or for
* each wall m-value).
*
* Waviness (random) may be specified either globally or for each mirror type.
* Side chamfers (due to substrate processing) may be specified the same way.
* In order to model a realistic straight guide assembly, a long guide of
* length 'l' may be splitted into 'nelements' between which chamfers/gaps are
* positioned.
*
* The reflectivity may be specified either using an analytical mode (see
* Component manual) or as a text file in free format, with 1st
* column as q[Angs-1] and 2nd column as the reflectivity R in [0-1].
* For details on the geometry calculation see the description in the McStas
* component manual.
*
* There is a special rotating mode in order to approximate a Fermi Chopper
* behaviour, in the case the neutron trajectory is nearly linear inside the
* chopper slits, i.e. the neutrons are fast w/r/ to the chopper speed.
* Slits are straight, but may be super-mirror coated. In this case, the
* component is NOT centered, but located at its entry window. It should then
* be shifted by -l/2.
*
* Example: Guide_gravity(w1=0.1, h1=0.1, w2=0.1, h2=0.1, l=12,
*           R0=0.99, Qc=0.0219, alpha=6.07, m=1.0, W=0.003)
*
* %VALIDATION
* May 2005: extensive internal test, all problems solved
* Validated by: nslit. Lieutenant
*
* %P
* INPUT PARAMETERS:
*
* w1: [m]           Width at the guide entry
* h1: [m]           Height at the guide entry
* w2: [m]           Width at the guide exit. If 0, use w1.
* h2: [m]           Height at the guide exit. If 0, use h1.
* l: [m]            length of guide
* R0: [1]           Low-angle reflectivity
* Qc: [AA-1]        Critical scattering vector
* alpha: [AA]       Slope of reflectivity
* m: [1]            m-value of material. Zero means completely absorbing. m=0.65  glass/SiO2 Si   Ni  Ni58  supermirror Be    Diamond m=  0.65       0.47 1   1.18  2-6         1.01  1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si
* W: [AA-1]         Width of supermirror cut-off
* d: [m]            Thickness of subdividing walls
* nslit: [1]        Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).
*
* Optional input parameters: (different ways for m-specifications)
*
* mleft: [1]        m-value of material for left.   vert. mirror
* mright: [1]       m-value of material for right.  vert. mirror
* mtop: [1]         m-value of material for top.    horz. mirror
* mbottom: [1]      m-value of material for bottom. horz. mirror
* aleft: [1]        alpha-value of left  vert. mirror
* aright: [1]       alpha-value of right vert. mirror
* atop: [1]         alpha-value of top   horz. mirror
* abottom: [1]      alpha-value of left  horz. mirror
* nhslit: [1]       Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels
* G: [m/s2]         Gravitation norm. 0 value disables G effects.
* wavy: [deg]       Global guide waviness
* wavy_z: [deg]     Partial waviness along propagation axis
* wavy_tb: [deg]    Partial waviness in transverse direction for top/bottom mirrors
* wavy_lr: [deg]    Partial waviness in transverse direction for left/right mirrors
* chamfers: [m]     Global chamfers specifications (in/out/mirror sides).
* chamfers_z: [m]   Input and output chamfers
* chamfers_lr: [m]  Chamfers on left/right mirror sides
* chamfers_tb: [m]  Chamfers on top/bottom mirror sides
* nelements: [1]    Number of sections in the guide (length l/nelements).
* reflect: [str]    Reflectivity file name. Format <q(Angs-1) R(0-1)>
* nu: [Hz]          Rotation frequency (round/s) for Fermi Chopper approximation
* phase: [deg]      Phase shift for the Fermi Chopper approximation
*
* OUTPUT PARAMETERS
*
* GVars: [1]        internal variables.
* GVars.N_reflection: (1) Array of the cumulated Number of reflections.
*                   N_reflection[0] total nb of reflections,
*                   N_reflection[1,2,3,4] l/r/t/b reflections,
*                   N_reflection[5] total nb neutrons exiting guide,
*                   N_reflection[6] total nb neutrons entering guide.
*
* %D
* Example values: m=4 Qc=0.02 W=1/300 alpha=6.49 R0=1
*
* %E
*******************************************************************************/

DEFINE COMPONENT Guide_gravity

SETTING PARAMETERS (w1, h1, w2=0, h2=0, l,
  R0=0.995, Qc=0.0218, alpha=4.38, m=1.0, W=0.003, nslit=1, d=0.0005,
  mleft=-1, mright=-1, mtop=-1, mbottom=-1, nhslit=1, G=0,
  aleft=-1, aright=-1, atop=-1, abottom=-1,
  wavy=0, wavy_z=0, wavy_tb=0, wavy_lr=0,
  chamfers=0, chamfers_z=0, chamfers_lr=0, chamfers_tb=0, nelements=1,
  nu=0, phase=0, string reflect="NULL")

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "ref-lib"
#ifndef Gravity_guide_Version
#define Gravity_guide_Version "$Revision$"

#ifndef PROP_GRAV_DT
#error McStas : You need PROP_GRAV_DT (McStas >= 1.4.3) to run this component
#endif

/*
* G:       (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gx:      (m/s^2) Gravitation acceleration along x axis [0]
* Gy:      (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gz:      (m/s^2) Gravitation acceleration along z axis [0]
* mh:      (1)    m-value of material for left/right vert. mirrors
* mv:      (1)    m-value of material for top/bottom horz. mirrors
* mx:      (1)    m-value of material for left/right vert. mirrors
* my:      (1)    m-value of material for top/bottom horz. mirrors
*/

  typedef struct Gravity_guide_Vars
  {
    double gx;
    double gy;
    double gz;
    double nx[6], ny[6], nz[6];
    double wx[6], wy[6], wz[6];
    double A[6], norm_n2[6], norm_n[6];
    long   N_reflection[7];
    double w1c, h1c;
    double w2c, h2c;
    double M[5];
    double Alpha[5];
    double nzC[5], norm_n2xy[5], Axy[5];
    double wav_lr, wav_tb, wav_z;
    double chamfer_z, chamfer_lr, chamfer_tb;
    char   compcurname[256];
    double fc_freq, fc_phase;
    double warnings;
  } Gravity_guide_Vars_type;

  void Gravity_guide_Init(Gravity_guide_Vars_type *aVars,
    MCNUM a_w1, MCNUM a_h1, MCNUM a_w2, MCNUM a_h2, MCNUM a_l, MCNUM a_R0,
    MCNUM a_Qc, MCNUM a_alpha, MCNUM a_m, MCNUM a_W, MCNUM a_nslit, MCNUM a_d,
    MCNUM a_Gx, MCNUM a_Gy, MCNUM a_Gz,
    MCNUM a_mleft, MCNUM a_mright, MCNUM a_mtop, MCNUM a_mbottom, MCNUM a_nhslit,
    MCNUM a_wavy_lr, MCNUM a_wavy_tb, MCNUM a_wavy_z, MCNUM a_wavy,
    MCNUM a_chamfers_z, MCNUM a_chamfers_lr, MCNUM a_chamfers_tb, MCNUM a_chamfers,
    MCNUM a_nu, MCNUM a_phase, MCNUM a_aleft, MCNUM a_aright, MCNUM a_atop, MCNUM a_abottom)
  {
    int i;

    for (i=0; i<7; aVars->N_reflection[i++] = 0);
    for (i=0; i<5; aVars->M[i++] = 0);
    for (i=0; i<5; aVars->Alpha[i++] = 0);

    aVars->gx = a_Gx; /* The gravitation vector in the current component axis system */
    aVars->gy = a_Gy;
    aVars->gz = a_Gz;
    aVars->warnings=0;

    if (a_nslit <= 0 || a_nhslit <= 0) { fprintf(stderr,"%s: Fatal: no channel in this guide (nhslit or nslit=0).\n", aVars->compcurname); exit(-1); }
    if (a_d < 0) { fprintf(stderr,"%s: Fatal: subdividing walls have negative thickness in this guide (d<0).\n", aVars->compcurname); exit(-1); }
    aVars->w1c = (a_w1 - (a_nslit-1) *a_d)/(double)a_nslit;
    aVars->w2c = (a_w2 - (a_nslit-1) *a_d)/(double)a_nslit;
    aVars->h1c = (a_h1 - (a_nhslit-1)*a_d)/(double)a_nhslit;
    aVars->h2c = (a_h2 - (a_nhslit-1)*a_d)/(double)a_nhslit;

    for (i=0; i <= 4;   aVars->M[i++]=a_m);
    for (i=0; i <= 4;   aVars->Alpha[i++]=a_alpha);
    if (a_mleft   >= 0) aVars->M[1] =a_mleft  ;
    if (a_mright  >= 0) aVars->M[2] =a_mright ;
    if (a_mtop    >= 0) aVars->M[3] =a_mtop   ;
    if (a_mbottom >= 0) aVars->M[4] =a_mbottom;
    if (a_aleft   >= 0) aVars->Alpha[1] =a_aleft  ;
    if (a_aright  >= 0) aVars->Alpha[2] =a_aright ;
    if (a_atop    >= 0) aVars->Alpha[3] =a_atop   ;
    if (a_abottom >= 0) aVars->Alpha[4] =a_abottom;

    /* n: normal vectors to surfaces */
    aVars->nx[1] =  a_l; aVars->ny[1] =  0;   aVars->nz[1] =  0.5*(aVars->w2c-aVars->w1c);  /* 1:+X left       */
    aVars->nx[2] = -a_l; aVars->ny[2] =  0;   aVars->nz[2] = -aVars->nz[1];             /* 2:-X right      */
    aVars->nx[3] =  0;   aVars->ny[3] =  a_l; aVars->nz[3] =  0.5*(aVars->h2c-aVars->h1c);  /* 3:+Y top        */
    aVars->nx[4] =  0;   aVars->ny[4] = -a_l; aVars->nz[4] = -aVars->nz[3];             /* 4:-Y bottom     */
    aVars->nx[5] =  0;   aVars->ny[5] =  0;   aVars->nz[5] =  a_l;                      /* 5:+Z exit       */
    aVars->nx[0] =  0;   aVars->ny[0] =  0;   aVars->nz[0] = -a_l;                      /* 0:Z0 input      */
    /* w: a point on these surfaces */
    aVars->wx[1] = +(aVars->w1c)/2; aVars->wy[1] =  0;              aVars->wz[1] = 0;   /* 1:+X left       */
    aVars->wx[2] = -(aVars->w1c)/2; aVars->wy[2] =  0;              aVars->wz[2] = 0;   /* 2:-X right      */
    aVars->wx[3] =  0;              aVars->wy[3] = +(aVars->h1c)/2; aVars->wz[3] = 0;   /* 3:+Y top        */
    aVars->wx[4] =  0;              aVars->wy[4] = -(aVars->h1c)/2; aVars->wz[4] = 0;   /* 4:-Y bottom     */
    aVars->wx[5] =  0;              aVars->wy[5] =  0;              aVars->wz[5] = a_l; /* 5:+Z exit       */
    aVars->wx[0] =  0;              aVars->wy[0] =  0;              aVars->wz[0] = 0;   /* 0:Z0 input      */

    for (i=0; i <= 5; i++)
    {
      aVars->A[i] = scalar_prod(aVars->nx[i], aVars->ny[i], aVars->nz[i], aVars->gx, aVars->gy, aVars->gz)/2;
      aVars->norm_n2[i] = aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i] + aVars->nz[i]*aVars->nz[i];
      if (aVars->norm_n2[i] <= 0)
        { fprintf(stderr,"%s: Fatal: normal vector norm %i is null/negative ! check guide dimensions.\n", aVars->compcurname, i); exit(-1); } /* should never occur */
      else
        aVars->norm_n[i] = sqrt(aVars->norm_n2[i]);
    }
    /* partial computations for l/r/t/b sides, to save computing time */
    for (i=1; i <= 4; i++)
    { /* stores nz that changes in case non box element (focus/defocus) */
      aVars->nzC[i]      =  aVars->nz[i]; /* partial xy terms */
      aVars->norm_n2xy[i]=  aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i];
      aVars->Axy[i]      = (aVars->nx[i]*aVars->gx    + aVars->ny[i]*aVars->gy)/2;
    }
    /* handle waviness init */
    if (a_wavy && (!a_wavy_tb && !a_wavy_lr && !a_wavy_z))
    { aVars->wav_tb=aVars->wav_lr=aVars->wav_z=a_wavy; }
    else
    { aVars->wav_tb=a_wavy_tb; aVars->wav_lr=a_wavy_lr; aVars->wav_z=a_wavy_z; }
    aVars->wav_tb *= DEG2RAD/(sqrt(8*log(2)));   /* Convert from deg FWHM to rad Gaussian sigma */
    aVars->wav_lr *= DEG2RAD/(sqrt(8*log(2)));
    aVars->wav_z  *= DEG2RAD/(sqrt(8*log(2)));
    /* handle chamfers init */
    if (a_chamfers && (!a_chamfers_z && !a_chamfers_lr && !a_chamfers_tb))
    { aVars->chamfer_z=aVars->chamfer_lr=aVars->chamfer_tb=a_chamfers; }
    else
    {
      aVars->chamfer_z=a_chamfers_z;
      aVars->chamfer_lr=a_chamfers_lr;
      aVars->chamfer_tb=a_chamfers_tb;
    }

    aVars->fc_freq  = a_nu;
    aVars->fc_phase = a_phase;
  }

#pragma acc routine seq
  int Gravity_guide_Trace(double *dt,
        Gravity_guide_Vars_type *aVars,
        double cx, double cy, double cz,
        double cvx, double cvy, double cvz,
        double cxnum, double cxk, double cynum, double cyk,
        double *cnx, double *cny, double *cnz, _class_particle* _particle)
  {
    double B, C;
    int    ret=0;
    int    side=0;
    double n1;
    double dt0, dt_min=0;
    int    i;
    double loc_num, loc_nslit;
    int    i_slope=3;

    /* look if there is a previous intersection with guide sides */
    /* A = 0.5 n.g; B = n.v; C = n.(r-W); */
    /* 5=+Z side: n=(0, 0, -l) ; W = (0, 0, l) (at z=l, guide exit)*/
    B = aVars->nz[5]*cvz; C = aVars->nz[5]*(cz - aVars->wz[5]);
    ret = solve_2nd_order(&dt0, NULL, aVars->A[5], B, C);
    if (ret && dt0>1e-10) { dt_min = dt0; side=5; }

    loc_num = cynum; loc_nslit = cyk;
    for (i=4; i>0; i--)
    {
      if (i == 2) { i_slope=1; loc_num = cxnum; loc_nslit = cxk; }

      if (aVars->nzC[i_slope] != 0) {
        n1 = loc_nslit - 2*(loc_num);  /* slope of l/r/u/d sides depends on the channel ! */
        loc_num++; /* use partial computations to alter nz and A */
        aVars->nz[i]= aVars->nzC[i]*n1;
        aVars->A[i] = aVars->Axy[i] + aVars->nz[i]*aVars->gz/2;
      }
      if (i < 3)
      {      B = aVars->nx[i]*cvx + aVars->nz[i]*cvz; C = aVars->nx[i]*(cx-aVars->wx[i]) + aVars->nz[i]*cz; }
      else { B = aVars->ny[i]*cvy + aVars->nz[i]*cvz; C = aVars->ny[i]*(cy-aVars->wy[i]) + aVars->nz[i]*cz; }
      ret = solve_2nd_order(&dt0, NULL, aVars->A[i], B, C);
      if (ret && dt0>1e-10 && (dt0<dt_min || !dt_min))
      { dt_min = dt0; side=i;
        if (aVars->nzC[i] != 0)
        { aVars->norm_n2[i] = aVars->norm_n2xy[i] + aVars->nz[i]*aVars->nz[i];
          aVars->norm_n[i]  = sqrt(aVars->norm_n2[i]); }
      }
     }

    *dt = dt_min;
    /* handles waviness: rotate n vector */
    if (side > 0 && side < 5 && (aVars->wav_z || aVars->wav_lr || aVars->wav_tb))
    {
      double nt_x, nt_y, nt_z;  /* transverse vector */
      double nn_x, nn_y, nn_z;  /* normal vector (tmp) */
      double phi;
      /* normal vector n_z = [ 0,0,1], n_t = n x n_z; */
      vec_prod(nt_x,nt_y,nt_z, aVars->nx[side],aVars->ny[side],aVars->nz[side], 0,0,1);
      /* rotate n with angle wavy_z around n_t -> nn */
      if (aVars->wav_z) {
        phi = aVars->wav_z;
        rotate(nn_x,nn_y,nn_z, aVars->nx[side],aVars->ny[side],aVars->nz[side], aVars->wav_z*randnorm(), nt_x,nt_y,nt_z);
      } else { nn_x=aVars->nx[side]; nn_y=aVars->ny[side]; nn_z=aVars->nz[side]; }
      /* rotate n with angle wavy_{x|y} around n_z -> nt */
      phi = (side <=2) ? aVars->wav_lr : aVars->wav_tb;
      if (phi) {
        rotate(nt_x,nt_y,nt_z, nn_x,nn_y,nn_z, phi*randnorm(), 0,0,1);
      } else { nt_x=nn_x; nt_y=nn_y; nt_z=nn_z; }
      *cnx=nt_x; *cny=nt_y; *cnz=nt_z;
    } else
    { *cnx=aVars->nx[side]; *cny=aVars->ny[side]; *cnz=aVars->nz[side]; }
    return (side);
  }

%include "read_table-lib"

#endif
%}

DECLARE
%{
  Gravity_guide_Vars_type GVarsGlobal;
  t_Table pTable;
  int table_present;
%}

INITIALIZE
%{
  double Gx=0, Gy=-GRAVITY, Gz=0;
  Coords mcLocG;
  int i;

  if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0")) {
    if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
      exit(fprintf(stderr,"Guide_gravity: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
    table_present=1;
  } else {
    table_present=0;
    if (W < 0 || R0 < 0 || Qc < 0)
    { fprintf(stderr,"Guide_gravity: %s: W R0 Qc must be >0.\n", NAME_CURRENT_COMP);
      exit(-1); }
  }

  if (nslit <= 0 || nhslit <= 0)
  { fprintf(stderr,"Guide_gravity: %s: nslit nhslit must be >0.\n", NAME_CURRENT_COMP);
    exit(-1); }

  if (!w1 || !h1)
  { fprintf(stderr,"Guide_gravity: %s: input window is closed (w1=h1=0).\n", NAME_CURRENT_COMP);
    exit(-1); }

  if (d*(nslit-1) > w1) exit(fprintf(stderr, "Guide_gravity: %s: absorbing walls fill input window. No space left for transmission (d*(nslit-1) > w1).\n", NAME_CURRENT_COMP));

  if (!w2) w2=w1;
  if (!h2) h2=h1;

  if (mcgravitation) G=-GRAVITY;
  mcLocG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,G,0));
  coords_get(mcLocG, &Gx, &Gy, &Gz);

  strcpy(GVarsGlobal.compcurname, NAME_CURRENT_COMP);

  if (l > 0 && nelements > 0) {

    Gravity_guide_Init(&GVarsGlobal,
      w1, h1, w2, h2, l, R0,
      Qc, alpha, m, W, nslit, d,
      Gx, Gy, Gz, mleft, mright, mtop,
      mbottom, nhslit, wavy_lr, wavy_tb, wavy_z, wavy,
      chamfers_z, chamfers_lr, chamfers_tb, chamfers,nu,phase,aleft,aright,atop,abottom);
    if (!G) for (i=0; i<5; GVarsGlobal.A[i++] = 0);
    if (GVarsGlobal.fc_freq != 0 || GVarsGlobal.fc_phase != 0) {
      if (w1 != w2 || h1 != h2)
      exit(fprintf(stderr,"Guide_gravity: %s: rotating slit pack must be straight (w1=w2 and h1=h2).\n", NAME_CURRENT_COMP));
      printf("Guide_gravity: %s: Fermi Chopper mode: frequency=%g [Hz] phase=%g [deg]\n",
        NAME_CURRENT_COMP, GVarsGlobal.fc_freq, GVarsGlobal.fc_phase);
    }
  } else printf("Guide_gravity: %s: unactivated (l=0 or nelements=0)\n", NAME_CURRENT_COMP);

%}

TRACE
%{

  Gravity_guide_Vars_type GVars = GVarsGlobal;
  GVars.warnings = 0;

  if (l > 0 && nelements > 0) {
    double B, C, dt;
    int    ret, bounces = 0, i=0;
    double this_width, this_height;
    double angle=0;

    if (GVars.fc_freq != 0 || GVars.fc_phase != 0) { /* rotate neutron w/r to guide element */
      /* approximation of rotating straight Fermi Chopper */
      Coords   X = coords_set(x,y,z-l/2);  /* current coordinates of neutron in centered static frame */
      Rotation R;
      double dt=(-z+l/2)/vz; /* time shift to each center of slit package */
      angle=fmod(360*GVars.fc_freq*(t+dt)+GVars.fc_phase, 360); /* in deg */
      /* modify angle so that Z0 guide side is always in front of incoming neutron */
      if (angle > 90 && angle < 270) { angle -= 180; }
      angle *= DEG2RAD;
      rot_set_rotation(R, 0, -angle, 0); /* will rotate neutron instead of comp: negative side */
      /* apply rotation to centered coordinates */
      Coords   RX = rot_apply(R, X);
      coords_get(RX, &x, &y, &z);
      z = z+l/2;
      /* rotate speed */
      X  = coords_set(vx,vy,vz);
      RX = rot_apply(R, X);
      coords_get(RX, &vx, &vy, &vz);
    }

    for (i=0; i<7; GVars.N_reflection[i++] = 0);

    /* propagate to box input (with gravitation) in comp local coords */
    /* A = 0.5 n.g; B = n.v; C = n.(r-W); */
    /* 0=Z0 side: n=(0, 0, -l) ; W = (0, 0, 0) (at z=0, guide input)*/
    B = -l*vz; C = -l*z;

    ret = solve_2nd_order(&dt, NULL, GVars.A[0], B, C);
    if (ret==0) ABSORB;

    if (dt>0.0) PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz); else if (angle) ABSORB;
    GVars.N_reflection[6]++;

    this_width  = w1;
    this_height = h1;

  /* check if we are in the box input, else absorb */
    if (fabs(x) > this_width/2 || fabs(y) > this_height/2)
      ABSORB;
    else
    {
      double w_edge, w_adj; /* Channel displacement on X */
      double h_edge, h_adj; /* Channel displacement on Y */
      double w_chnum,h_chnum; /* channel indexes */

      SCATTER;

      /* X: Shift origin to center of channel hit (absorb if hit dividing walls) */
      x += w1/2.0;
      w_chnum = floor(x/(GVars.w1c+d));  /* 0= right side, nslit+1=left side  */
      w_edge  = w_chnum*(GVars.w1c+d);
      if(x - w_edge > GVars.w1c)
      {
        x -= w1/2.0; /* Re-adjust origin */
        ABSORB;
      }
      w_adj = w_edge + (GVars.w1c)/2.0;
      x -= w_adj; w_adj -=  w1/2.0;

      /* Y: Shift origin to center of channel hit (absorb if hit dividing walls) */
      y += h1/2.0;
      h_chnum = floor(y/(GVars.h1c+d));  /* 0= lower side, nslit+1=upper side  */
      h_edge  = h_chnum*(GVars.h1c+d);
      if(y - h_edge > GVars.h1c)
      {
        y -= h1/2.0; /* Re-adjust origin */
        ABSORB;
      }
      h_adj = h_edge + (GVars.h1c)/2.0;
      y -= h_adj; h_adj -=  h1/2.0;

      /* neutron is now in the input window of the guide */
      /* do loops on reflections in the box */
      for(;;)
      {
        /* get intersections for all box sides */
        double q, nx,ny,nz;
        double this_length;
        int side=0;

        bounces++;
        /* now look for intersection with guide sides and exit */
        side = Gravity_guide_Trace(&dt, &GVars, x, y, z,
            vx, vy, vz, w_chnum, nslit, h_chnum, nhslit,
            &nx, &ny, &nz, _particle);
        /* only positive dt are valid */
        /* exit reflection loops if no intersection (neutron is after box) */
        if (side == 0 || dt <= 0)
          {
	  if (GVars.warnings < 100)
              fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVars.compcurname);
            GVars.warnings++;
            x += w_adj; y += h_adj; ABSORB; } /* should never occur */

        /* propagate to dt */
        PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz);

        /* do reflection on speed for l/r/u/d sides */
        if (side == 5) /* neutron reaches end of guide: end loop and exit comp */
          { GVars.N_reflection[side]++; x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj; break; }
        /* else reflection on a guide wall */
        if(GVars.M[side] == 0 || Qc == 0 || R0 == 0)  /* walls are absorbing */
          { x += w_adj; y += h_adj; ABSORB; }
        /* handle chamfers */
        this_width = w1+(w2-w1)*z/l;
        this_height= h1+(h2-h1)*z/l;
        this_length= fmod(z, l/nelements);
        /* absorb on input/output of element parts */
        if (GVars.chamfer_z && (this_length<GVars.chamfer_z || this_length>l/nelements-GVars.chamfer_z))
        { x += w_adj; y += h_adj; ABSORB; }
        /* absorb on l/r/t/b sides */
        if (GVars.chamfer_lr && (side==1 || side==2) && (fabs(y+h_adj)>this_height/2-GVars.chamfer_lr))
        { x += w_adj; y += h_adj; ABSORB; }
        if (GVars.chamfer_tb && (side==3 || side==4) && (fabs(x+w_adj)>this_width/2- GVars.chamfer_tb))
        { x += w_adj; y += h_adj; ABSORB; }
        /* change/mirror velocity: h_f = v - n.2*n.v/|n|^2 */
        GVars.N_reflection[side]++; /* GVars.norm_n2 > 0 was checked at INIT */
        /* compute n.v using current values */
        B = scalar_prod(vx,vy,vz,nx,ny,nz);
        dt = 2*B/GVars.norm_n2[side]; /* 2*n.v/|n|^2 */
        vx -= nx*dt;
        vy -= ny*dt;
        vz -= nz*dt;

        /* compute q and modify neutron weight */
        /* scattering q=|n_i-n_f| = V2Q*|vf - v| = V2Q*2*n.v/|n| */
        q = 2*V2Q*fabs(B)/GVars.norm_n[side];

        if (table_present==1)
          TableReflecFunc(q, &pTable, &B);
        else {
          double par[] = {R0, Qc, GVars.Alpha[side], GVars.M[side], W};
          StdReflecFunc(q, par, &B);
        }
        if (B <= 0) { x += w_adj; y += h_adj; ABSORB; }
        else p *= B;
        x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj;
        GVars.N_reflection[0]++;
        /* go to the next reflection */
        if (bounces > 1000) ABSORB;
      } /* end for */
      x += w_adj; y += h_adj; /* Re-adjust origin after SCATTER */
    }

    if (GVars.fc_freq != 0 || GVars.fc_phase != 0) { /* rotate back neutron w/r to guide element */
      /* approximation of rotating straight Fermi Chopper */
      Coords   X = coords_set(x,y,z-l/2);  /* current coordinates of neutron in centered static frame */
      Rotation R;
      rot_set_rotation(R, 0, angle, 0); /* will rotate back neutron: positive side */
      /* apply rotation to centered coordinates */
      Coords   RX = rot_apply(R, X);
      coords_get(RX, &x, &y, &z);
      z = z+l/2;
      /* rotate speed */
      X  = coords_set(vx,vy,vz);
      RX = rot_apply(R, X);
      coords_get(RX, &vx, &vy, &vz);
    }

  } /* if l */

  #pragma acc atomic
  GVarsGlobal.warnings = GVarsGlobal.warnings + GVars.warnings;
%}

FINALLY
%{
if (GVarsGlobal.warnings > 100) {
  fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVarsGlobal.compcurname);
  fprintf(stderr,"%s: warning: This message has been repeated %g times\n", GVarsGlobal.compcurname, GVarsGlobal.warnings);
}
%}


MCDISPLAY
%{

  if (l > 0 && nelements > 0) {
    int i,j,n;
    double x1,x2,x3,x4;
    double y1,y2,y3,y4;
    double nel = (nelements > 11 ? 11 : nelements);

    
    for (n=0; n<nel; n++)
    {
      double z0, z1;
      z0 =     n*(l/nel);
      z1 = (n+1)*(l/nel);

      for(j = 0; j < nhslit; j++)
      {
        y1 = j*(GVarsGlobal.h1c+d)         - h1/2.0;
        y2 = j*(GVarsGlobal.h2c+d)         - h2/2.0;
        y3 = (j+1)*(GVarsGlobal.h1c+d) - d - h1/2.0;
        y4 = (j+1)*(GVarsGlobal.h2c+d) - d - h2/2.0;
        for(i = 0; i < nslit; i++)
        {
          x1 = i*(GVarsGlobal.w1c+d)         - w1/2.0;
          x2 = i*(GVarsGlobal.w2c+d)         - w2/2.0;
          x3 = (i+1)*(GVarsGlobal.w1c+d) - d - w1/2.0;
          x4 = (i+1)*(GVarsGlobal.w2c+d) - d - w2/2.0;
	  // Visualize i'th channel with vertical polygons
          polygon(4,
                    x1, y1, z0,
                    x2, y2, z1,
                    x2, y4, z1,
                    x1, y3, z0);
          polygon(4,
                    x3, y1, z0,
                    x4, y2, z1,
                    x4, y4, z1,
                    x3, y3, z0);
        }
	// Visualize "floor/roof" of i'th channel with vertical polygons
        polygon(4,-w1/2.0, y1, z0, w1/2.0, y1, z0, w2/2.0, y2, z1, -w2/2.0, y2, z1);
        polygon(4,-w1/2.0, y3, z0, w1/2.0, y3, z0, w2/2.0, y4, z1, -w2/2.0, y4, z1);
      }
    }

    if (nu || phase) {
      double radius = sqrt(w1*w1+l*l);
      /* cylinder top/center/bottom  */
      circle("xz", 0,-h1/2,l/2,radius);
      circle("xz", 0,0    ,l/2,radius);
      circle("xz", 0, h1/2,l/2,radius);
    }
  }
  else {
    /* A bit ugly; hard-coded dimensions. */
    
    line(0,0,0,0.2,0,0);
    line(0,0,0,0,0.2,0);
    line(0,0,0,0,0,0.2);
  }

%}

END