1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Guide_gravity
*
* %I
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: Aug 03 2001
* Origin: <a href="http://www.ill.fr">ILL (France)</a>.
* Modified by: E. Farhi, from Gravity_guide by nslit. Lefmann (buggy).
* Modified by: E. Farhi, focusing channels are now ok (Sept 4th, 2001).
* Modified by: E. Farhi, 2D channel array. Correct focus bug (Dec 14th 2002)
* Modified by: E. Farhi, Waviness+chamfers+nelements (Aug 19th 2003)
*
* Neutron straight guide with gravity. Can be channeled and focusing.
* Waviness may be specified, as well as side chamfers (on substrate).
*
* %D
* Models a rectangular straight guide tube centered on the Z axis, with
* gravitation handling. The entrance lies in the X-Y plane.
* The guide can be channeled (nslit,d,nhslit parameters). The guide coating
* specifications may be entered via different ways (global, or for
* each wall m-value).
*
* Waviness (random) may be specified either globally or for each mirror type.
* Side chamfers (due to substrate processing) may be specified the same way.
* In order to model a realistic straight guide assembly, a long guide of
* length 'l' may be splitted into 'nelements' between which chamfers/gaps are
* positioned.
*
* The reflectivity may be specified either using an analytical mode (see
* Component manual) or as a text file in free format, with 1st
* column as q[Angs-1] and 2nd column as the reflectivity R in [0-1].
* For details on the geometry calculation see the description in the McStas
* component manual.
*
* There is a special rotating mode in order to approximate a Fermi Chopper
* behaviour, in the case the neutron trajectory is nearly linear inside the
* chopper slits, i.e. the neutrons are fast w/r/ to the chopper speed.
* Slits are straight, but may be super-mirror coated. In this case, the
* component is NOT centered, but located at its entry window. It should then
* be shifted by -l/2.
*
* Example: Guide_gravity(w1=0.1, h1=0.1, w2=0.1, h2=0.1, l=12,
* R0=0.99, Qc=0.0219, alpha=6.07, m=1.0, W=0.003)
*
* %VALIDATION
* May 2005: extensive internal test, all problems solved
* Validated by: nslit. Lieutenant
*
* %P
* INPUT PARAMETERS:
*
* w1: [m] Width at the guide entry
* h1: [m] Height at the guide entry
* w2: [m] Width at the guide exit. If 0, use w1.
* h2: [m] Height at the guide exit. If 0, use h1.
* l: [m] length of guide
* R0: [1] Low-angle reflectivity
* Qc: [AA-1] Critical scattering vector
* alpha: [AA] Slope of reflectivity
* m: [1] m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si
* W: [AA-1] Width of supermirror cut-off
* d: [m] Thickness of subdividing walls
* nslit: [1] Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).
*
* Optional input parameters: (different ways for m-specifications)
*
* mleft: [1] m-value of material for left. vert. mirror
* mright: [1] m-value of material for right. vert. mirror
* mtop: [1] m-value of material for top. horz. mirror
* mbottom: [1] m-value of material for bottom. horz. mirror
* aleft: [1] alpha-value of left vert. mirror
* aright: [1] alpha-value of right vert. mirror
* atop: [1] alpha-value of top horz. mirror
* abottom: [1] alpha-value of left horz. mirror
* nhslit: [1] Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels
* G: [m/s2] Gravitation norm. 0 value disables G effects.
* wavy: [deg] Global guide waviness
* wavy_z: [deg] Partial waviness along propagation axis
* wavy_tb: [deg] Partial waviness in transverse direction for top/bottom mirrors
* wavy_lr: [deg] Partial waviness in transverse direction for left/right mirrors
* chamfers: [m] Global chamfers specifications (in/out/mirror sides).
* chamfers_z: [m] Input and output chamfers
* chamfers_lr: [m] Chamfers on left/right mirror sides
* chamfers_tb: [m] Chamfers on top/bottom mirror sides
* nelements: [1] Number of sections in the guide (length l/nelements).
* reflect: [str] Reflectivity file name. Format <q(Angs-1) R(0-1)>
* nu: [Hz] Rotation frequency (round/s) for Fermi Chopper approximation
* phase: [deg] Phase shift for the Fermi Chopper approximation
*
* OUTPUT PARAMETERS
*
* GVars: [1] internal variables.
* GVars.N_reflection: (1) Array of the cumulated Number of reflections.
* N_reflection[0] total nb of reflections,
* N_reflection[1,2,3,4] l/r/t/b reflections,
* N_reflection[5] total nb neutrons exiting guide,
* N_reflection[6] total nb neutrons entering guide.
*
* %D
* Example values: m=4 Qc=0.02 W=1/300 alpha=6.49 R0=1
*
* %E
*******************************************************************************/
DEFINE COMPONENT Guide_gravity
SETTING PARAMETERS (w1, h1, w2=0, h2=0, l,
R0=0.995, Qc=0.0218, alpha=4.38, m=1.0, W=0.003, nslit=1, d=0.0005,
mleft=-1, mright=-1, mtop=-1, mbottom=-1, nhslit=1, G=0,
aleft=-1, aright=-1, atop=-1, abottom=-1,
wavy=0, wavy_z=0, wavy_tb=0, wavy_lr=0,
chamfers=0, chamfers_z=0, chamfers_lr=0, chamfers_tb=0, nelements=1,
nu=0, phase=0, string reflect="NULL")
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "ref-lib"
#ifndef Gravity_guide_Version
#define Gravity_guide_Version "$Revision$"
#ifndef PROP_GRAV_DT
#error McStas : You need PROP_GRAV_DT (McStas >= 1.4.3) to run this component
#endif
/*
* G: (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gx: (m/s^2) Gravitation acceleration along x axis [0]
* Gy: (m/s^2) Gravitation acceleration along y axis [-9.81]
* Gz: (m/s^2) Gravitation acceleration along z axis [0]
* mh: (1) m-value of material for left/right vert. mirrors
* mv: (1) m-value of material for top/bottom horz. mirrors
* mx: (1) m-value of material for left/right vert. mirrors
* my: (1) m-value of material for top/bottom horz. mirrors
*/
typedef struct Gravity_guide_Vars
{
double gx;
double gy;
double gz;
double nx[6], ny[6], nz[6];
double wx[6], wy[6], wz[6];
double A[6], norm_n2[6], norm_n[6];
long N_reflection[7];
double w1c, h1c;
double w2c, h2c;
double M[5];
double Alpha[5];
double nzC[5], norm_n2xy[5], Axy[5];
double wav_lr, wav_tb, wav_z;
double chamfer_z, chamfer_lr, chamfer_tb;
char compcurname[256];
double fc_freq, fc_phase;
double warnings;
} Gravity_guide_Vars_type;
void Gravity_guide_Init(Gravity_guide_Vars_type *aVars,
MCNUM a_w1, MCNUM a_h1, MCNUM a_w2, MCNUM a_h2, MCNUM a_l, MCNUM a_R0,
MCNUM a_Qc, MCNUM a_alpha, MCNUM a_m, MCNUM a_W, MCNUM a_nslit, MCNUM a_d,
MCNUM a_Gx, MCNUM a_Gy, MCNUM a_Gz,
MCNUM a_mleft, MCNUM a_mright, MCNUM a_mtop, MCNUM a_mbottom, MCNUM a_nhslit,
MCNUM a_wavy_lr, MCNUM a_wavy_tb, MCNUM a_wavy_z, MCNUM a_wavy,
MCNUM a_chamfers_z, MCNUM a_chamfers_lr, MCNUM a_chamfers_tb, MCNUM a_chamfers,
MCNUM a_nu, MCNUM a_phase, MCNUM a_aleft, MCNUM a_aright, MCNUM a_atop, MCNUM a_abottom)
{
int i;
for (i=0; i<7; aVars->N_reflection[i++] = 0);
for (i=0; i<5; aVars->M[i++] = 0);
for (i=0; i<5; aVars->Alpha[i++] = 0);
aVars->gx = a_Gx; /* The gravitation vector in the current component axis system */
aVars->gy = a_Gy;
aVars->gz = a_Gz;
aVars->warnings=0;
if (a_nslit <= 0 || a_nhslit <= 0) { fprintf(stderr,"%s: Fatal: no channel in this guide (nhslit or nslit=0).\n", aVars->compcurname); exit(-1); }
if (a_d < 0) { fprintf(stderr,"%s: Fatal: subdividing walls have negative thickness in this guide (d<0).\n", aVars->compcurname); exit(-1); }
aVars->w1c = (a_w1 - (a_nslit-1) *a_d)/(double)a_nslit;
aVars->w2c = (a_w2 - (a_nslit-1) *a_d)/(double)a_nslit;
aVars->h1c = (a_h1 - (a_nhslit-1)*a_d)/(double)a_nhslit;
aVars->h2c = (a_h2 - (a_nhslit-1)*a_d)/(double)a_nhslit;
for (i=0; i <= 4; aVars->M[i++]=a_m);
for (i=0; i <= 4; aVars->Alpha[i++]=a_alpha);
if (a_mleft >= 0) aVars->M[1] =a_mleft ;
if (a_mright >= 0) aVars->M[2] =a_mright ;
if (a_mtop >= 0) aVars->M[3] =a_mtop ;
if (a_mbottom >= 0) aVars->M[4] =a_mbottom;
if (a_aleft >= 0) aVars->Alpha[1] =a_aleft ;
if (a_aright >= 0) aVars->Alpha[2] =a_aright ;
if (a_atop >= 0) aVars->Alpha[3] =a_atop ;
if (a_abottom >= 0) aVars->Alpha[4] =a_abottom;
/* n: normal vectors to surfaces */
aVars->nx[1] = a_l; aVars->ny[1] = 0; aVars->nz[1] = 0.5*(aVars->w2c-aVars->w1c); /* 1:+X left */
aVars->nx[2] = -a_l; aVars->ny[2] = 0; aVars->nz[2] = -aVars->nz[1]; /* 2:-X right */
aVars->nx[3] = 0; aVars->ny[3] = a_l; aVars->nz[3] = 0.5*(aVars->h2c-aVars->h1c); /* 3:+Y top */
aVars->nx[4] = 0; aVars->ny[4] = -a_l; aVars->nz[4] = -aVars->nz[3]; /* 4:-Y bottom */
aVars->nx[5] = 0; aVars->ny[5] = 0; aVars->nz[5] = a_l; /* 5:+Z exit */
aVars->nx[0] = 0; aVars->ny[0] = 0; aVars->nz[0] = -a_l; /* 0:Z0 input */
/* w: a point on these surfaces */
aVars->wx[1] = +(aVars->w1c)/2; aVars->wy[1] = 0; aVars->wz[1] = 0; /* 1:+X left */
aVars->wx[2] = -(aVars->w1c)/2; aVars->wy[2] = 0; aVars->wz[2] = 0; /* 2:-X right */
aVars->wx[3] = 0; aVars->wy[3] = +(aVars->h1c)/2; aVars->wz[3] = 0; /* 3:+Y top */
aVars->wx[4] = 0; aVars->wy[4] = -(aVars->h1c)/2; aVars->wz[4] = 0; /* 4:-Y bottom */
aVars->wx[5] = 0; aVars->wy[5] = 0; aVars->wz[5] = a_l; /* 5:+Z exit */
aVars->wx[0] = 0; aVars->wy[0] = 0; aVars->wz[0] = 0; /* 0:Z0 input */
for (i=0; i <= 5; i++)
{
aVars->A[i] = scalar_prod(aVars->nx[i], aVars->ny[i], aVars->nz[i], aVars->gx, aVars->gy, aVars->gz)/2;
aVars->norm_n2[i] = aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i] + aVars->nz[i]*aVars->nz[i];
if (aVars->norm_n2[i] <= 0)
{ fprintf(stderr,"%s: Fatal: normal vector norm %i is null/negative ! check guide dimensions.\n", aVars->compcurname, i); exit(-1); } /* should never occur */
else
aVars->norm_n[i] = sqrt(aVars->norm_n2[i]);
}
/* partial computations for l/r/t/b sides, to save computing time */
for (i=1; i <= 4; i++)
{ /* stores nz that changes in case non box element (focus/defocus) */
aVars->nzC[i] = aVars->nz[i]; /* partial xy terms */
aVars->norm_n2xy[i]= aVars->nx[i]*aVars->nx[i] + aVars->ny[i]*aVars->ny[i];
aVars->Axy[i] = (aVars->nx[i]*aVars->gx + aVars->ny[i]*aVars->gy)/2;
}
/* handle waviness init */
if (a_wavy && (!a_wavy_tb && !a_wavy_lr && !a_wavy_z))
{ aVars->wav_tb=aVars->wav_lr=aVars->wav_z=a_wavy; }
else
{ aVars->wav_tb=a_wavy_tb; aVars->wav_lr=a_wavy_lr; aVars->wav_z=a_wavy_z; }
aVars->wav_tb *= DEG2RAD/(sqrt(8*log(2))); /* Convert from deg FWHM to rad Gaussian sigma */
aVars->wav_lr *= DEG2RAD/(sqrt(8*log(2)));
aVars->wav_z *= DEG2RAD/(sqrt(8*log(2)));
/* handle chamfers init */
if (a_chamfers && (!a_chamfers_z && !a_chamfers_lr && !a_chamfers_tb))
{ aVars->chamfer_z=aVars->chamfer_lr=aVars->chamfer_tb=a_chamfers; }
else
{
aVars->chamfer_z=a_chamfers_z;
aVars->chamfer_lr=a_chamfers_lr;
aVars->chamfer_tb=a_chamfers_tb;
}
aVars->fc_freq = a_nu;
aVars->fc_phase = a_phase;
}
#pragma acc routine seq
int Gravity_guide_Trace(double *dt,
Gravity_guide_Vars_type *aVars,
double cx, double cy, double cz,
double cvx, double cvy, double cvz,
double cxnum, double cxk, double cynum, double cyk,
double *cnx, double *cny, double *cnz, _class_particle* _particle)
{
double B, C;
int ret=0;
int side=0;
double n1;
double dt0, dt_min=0;
int i;
double loc_num, loc_nslit;
int i_slope=3;
/* look if there is a previous intersection with guide sides */
/* A = 0.5 n.g; B = n.v; C = n.(r-W); */
/* 5=+Z side: n=(0, 0, -l) ; W = (0, 0, l) (at z=l, guide exit)*/
B = aVars->nz[5]*cvz; C = aVars->nz[5]*(cz - aVars->wz[5]);
ret = solve_2nd_order(&dt0, NULL, aVars->A[5], B, C);
if (ret && dt0>1e-10) { dt_min = dt0; side=5; }
loc_num = cynum; loc_nslit = cyk;
for (i=4; i>0; i--)
{
if (i == 2) { i_slope=1; loc_num = cxnum; loc_nslit = cxk; }
if (aVars->nzC[i_slope] != 0) {
n1 = loc_nslit - 2*(loc_num); /* slope of l/r/u/d sides depends on the channel ! */
loc_num++; /* use partial computations to alter nz and A */
aVars->nz[i]= aVars->nzC[i]*n1;
aVars->A[i] = aVars->Axy[i] + aVars->nz[i]*aVars->gz/2;
}
if (i < 3)
{ B = aVars->nx[i]*cvx + aVars->nz[i]*cvz; C = aVars->nx[i]*(cx-aVars->wx[i]) + aVars->nz[i]*cz; }
else { B = aVars->ny[i]*cvy + aVars->nz[i]*cvz; C = aVars->ny[i]*(cy-aVars->wy[i]) + aVars->nz[i]*cz; }
ret = solve_2nd_order(&dt0, NULL, aVars->A[i], B, C);
if (ret && dt0>1e-10 && (dt0<dt_min || !dt_min))
{ dt_min = dt0; side=i;
if (aVars->nzC[i] != 0)
{ aVars->norm_n2[i] = aVars->norm_n2xy[i] + aVars->nz[i]*aVars->nz[i];
aVars->norm_n[i] = sqrt(aVars->norm_n2[i]); }
}
}
*dt = dt_min;
/* handles waviness: rotate n vector */
if (side > 0 && side < 5 && (aVars->wav_z || aVars->wav_lr || aVars->wav_tb))
{
double nt_x, nt_y, nt_z; /* transverse vector */
double nn_x, nn_y, nn_z; /* normal vector (tmp) */
double phi;
/* normal vector n_z = [ 0,0,1], n_t = n x n_z; */
vec_prod(nt_x,nt_y,nt_z, aVars->nx[side],aVars->ny[side],aVars->nz[side], 0,0,1);
/* rotate n with angle wavy_z around n_t -> nn */
if (aVars->wav_z) {
phi = aVars->wav_z;
rotate(nn_x,nn_y,nn_z, aVars->nx[side],aVars->ny[side],aVars->nz[side], aVars->wav_z*randnorm(), nt_x,nt_y,nt_z);
} else { nn_x=aVars->nx[side]; nn_y=aVars->ny[side]; nn_z=aVars->nz[side]; }
/* rotate n with angle wavy_{x|y} around n_z -> nt */
phi = (side <=2) ? aVars->wav_lr : aVars->wav_tb;
if (phi) {
rotate(nt_x,nt_y,nt_z, nn_x,nn_y,nn_z, phi*randnorm(), 0,0,1);
} else { nt_x=nn_x; nt_y=nn_y; nt_z=nn_z; }
*cnx=nt_x; *cny=nt_y; *cnz=nt_z;
} else
{ *cnx=aVars->nx[side]; *cny=aVars->ny[side]; *cnz=aVars->nz[side]; }
return (side);
}
%include "read_table-lib"
#endif
%}
DECLARE
%{
Gravity_guide_Vars_type GVarsGlobal;
t_Table pTable;
int table_present;
%}
INITIALIZE
%{
double Gx=0, Gy=-GRAVITY, Gz=0;
Coords mcLocG;
int i;
if (reflect && strlen(reflect) && strcmp(reflect,"NULL") && strcmp(reflect,"0")) {
if (Table_Read(&pTable, reflect, 1) <= 0) /* read 1st block data from file into pTable */
exit(fprintf(stderr,"Guide_gravity: %s: can not read file %s\n", NAME_CURRENT_COMP, reflect));
table_present=1;
} else {
table_present=0;
if (W < 0 || R0 < 0 || Qc < 0)
{ fprintf(stderr,"Guide_gravity: %s: W R0 Qc must be >0.\n", NAME_CURRENT_COMP);
exit(-1); }
}
if (nslit <= 0 || nhslit <= 0)
{ fprintf(stderr,"Guide_gravity: %s: nslit nhslit must be >0.\n", NAME_CURRENT_COMP);
exit(-1); }
if (!w1 || !h1)
{ fprintf(stderr,"Guide_gravity: %s: input window is closed (w1=h1=0).\n", NAME_CURRENT_COMP);
exit(-1); }
if (d*(nslit-1) > w1) exit(fprintf(stderr, "Guide_gravity: %s: absorbing walls fill input window. No space left for transmission (d*(nslit-1) > w1).\n", NAME_CURRENT_COMP));
if (!w2) w2=w1;
if (!h2) h2=h1;
if (mcgravitation) G=-GRAVITY;
mcLocG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,G,0));
coords_get(mcLocG, &Gx, &Gy, &Gz);
strcpy(GVarsGlobal.compcurname, NAME_CURRENT_COMP);
if (l > 0 && nelements > 0) {
Gravity_guide_Init(&GVarsGlobal,
w1, h1, w2, h2, l, R0,
Qc, alpha, m, W, nslit, d,
Gx, Gy, Gz, mleft, mright, mtop,
mbottom, nhslit, wavy_lr, wavy_tb, wavy_z, wavy,
chamfers_z, chamfers_lr, chamfers_tb, chamfers,nu,phase,aleft,aright,atop,abottom);
if (!G) for (i=0; i<5; GVarsGlobal.A[i++] = 0);
if (GVarsGlobal.fc_freq != 0 || GVarsGlobal.fc_phase != 0) {
if (w1 != w2 || h1 != h2)
exit(fprintf(stderr,"Guide_gravity: %s: rotating slit pack must be straight (w1=w2 and h1=h2).\n", NAME_CURRENT_COMP));
printf("Guide_gravity: %s: Fermi Chopper mode: frequency=%g [Hz] phase=%g [deg]\n",
NAME_CURRENT_COMP, GVarsGlobal.fc_freq, GVarsGlobal.fc_phase);
}
} else printf("Guide_gravity: %s: unactivated (l=0 or nelements=0)\n", NAME_CURRENT_COMP);
%}
TRACE
%{
Gravity_guide_Vars_type GVars = GVarsGlobal;
GVars.warnings = 0;
if (l > 0 && nelements > 0) {
double B, C, dt;
int ret, bounces = 0, i=0;
double this_width, this_height;
double angle=0;
if (GVars.fc_freq != 0 || GVars.fc_phase != 0) { /* rotate neutron w/r to guide element */
/* approximation of rotating straight Fermi Chopper */
Coords X = coords_set(x,y,z-l/2); /* current coordinates of neutron in centered static frame */
Rotation R;
double dt=(-z+l/2)/vz; /* time shift to each center of slit package */
angle=fmod(360*GVars.fc_freq*(t+dt)+GVars.fc_phase, 360); /* in deg */
/* modify angle so that Z0 guide side is always in front of incoming neutron */
if (angle > 90 && angle < 270) { angle -= 180; }
angle *= DEG2RAD;
rot_set_rotation(R, 0, -angle, 0); /* will rotate neutron instead of comp: negative side */
/* apply rotation to centered coordinates */
Coords RX = rot_apply(R, X);
coords_get(RX, &x, &y, &z);
z = z+l/2;
/* rotate speed */
X = coords_set(vx,vy,vz);
RX = rot_apply(R, X);
coords_get(RX, &vx, &vy, &vz);
}
for (i=0; i<7; GVars.N_reflection[i++] = 0);
/* propagate to box input (with gravitation) in comp local coords */
/* A = 0.5 n.g; B = n.v; C = n.(r-W); */
/* 0=Z0 side: n=(0, 0, -l) ; W = (0, 0, 0) (at z=0, guide input)*/
B = -l*vz; C = -l*z;
ret = solve_2nd_order(&dt, NULL, GVars.A[0], B, C);
if (ret==0) ABSORB;
if (dt>0.0) PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz); else if (angle) ABSORB;
GVars.N_reflection[6]++;
this_width = w1;
this_height = h1;
/* check if we are in the box input, else absorb */
if (fabs(x) > this_width/2 || fabs(y) > this_height/2)
ABSORB;
else
{
double w_edge, w_adj; /* Channel displacement on X */
double h_edge, h_adj; /* Channel displacement on Y */
double w_chnum,h_chnum; /* channel indexes */
SCATTER;
/* X: Shift origin to center of channel hit (absorb if hit dividing walls) */
x += w1/2.0;
w_chnum = floor(x/(GVars.w1c+d)); /* 0= right side, nslit+1=left side */
w_edge = w_chnum*(GVars.w1c+d);
if(x - w_edge > GVars.w1c)
{
x -= w1/2.0; /* Re-adjust origin */
ABSORB;
}
w_adj = w_edge + (GVars.w1c)/2.0;
x -= w_adj; w_adj -= w1/2.0;
/* Y: Shift origin to center of channel hit (absorb if hit dividing walls) */
y += h1/2.0;
h_chnum = floor(y/(GVars.h1c+d)); /* 0= lower side, nslit+1=upper side */
h_edge = h_chnum*(GVars.h1c+d);
if(y - h_edge > GVars.h1c)
{
y -= h1/2.0; /* Re-adjust origin */
ABSORB;
}
h_adj = h_edge + (GVars.h1c)/2.0;
y -= h_adj; h_adj -= h1/2.0;
/* neutron is now in the input window of the guide */
/* do loops on reflections in the box */
for(;;)
{
/* get intersections for all box sides */
double q, nx,ny,nz;
double this_length;
int side=0;
bounces++;
/* now look for intersection with guide sides and exit */
side = Gravity_guide_Trace(&dt, &GVars, x, y, z,
vx, vy, vz, w_chnum, nslit, h_chnum, nhslit,
&nx, &ny, &nz, _particle);
/* only positive dt are valid */
/* exit reflection loops if no intersection (neutron is after box) */
if (side == 0 || dt <= 0)
{
if (GVars.warnings < 100)
fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVars.compcurname);
GVars.warnings++;
x += w_adj; y += h_adj; ABSORB; } /* should never occur */
/* propagate to dt */
PROP_GRAV_DT(dt, GVars.gx, GVars.gy, GVars.gz);
/* do reflection on speed for l/r/u/d sides */
if (side == 5) /* neutron reaches end of guide: end loop and exit comp */
{ GVars.N_reflection[side]++; x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj; break; }
/* else reflection on a guide wall */
if(GVars.M[side] == 0 || Qc == 0 || R0 == 0) /* walls are absorbing */
{ x += w_adj; y += h_adj; ABSORB; }
/* handle chamfers */
this_width = w1+(w2-w1)*z/l;
this_height= h1+(h2-h1)*z/l;
this_length= fmod(z, l/nelements);
/* absorb on input/output of element parts */
if (GVars.chamfer_z && (this_length<GVars.chamfer_z || this_length>l/nelements-GVars.chamfer_z))
{ x += w_adj; y += h_adj; ABSORB; }
/* absorb on l/r/t/b sides */
if (GVars.chamfer_lr && (side==1 || side==2) && (fabs(y+h_adj)>this_height/2-GVars.chamfer_lr))
{ x += w_adj; y += h_adj; ABSORB; }
if (GVars.chamfer_tb && (side==3 || side==4) && (fabs(x+w_adj)>this_width/2- GVars.chamfer_tb))
{ x += w_adj; y += h_adj; ABSORB; }
/* change/mirror velocity: h_f = v - n.2*n.v/|n|^2 */
GVars.N_reflection[side]++; /* GVars.norm_n2 > 0 was checked at INIT */
/* compute n.v using current values */
B = scalar_prod(vx,vy,vz,nx,ny,nz);
dt = 2*B/GVars.norm_n2[side]; /* 2*n.v/|n|^2 */
vx -= nx*dt;
vy -= ny*dt;
vz -= nz*dt;
/* compute q and modify neutron weight */
/* scattering q=|n_i-n_f| = V2Q*|vf - v| = V2Q*2*n.v/|n| */
q = 2*V2Q*fabs(B)/GVars.norm_n[side];
if (table_present==1)
TableReflecFunc(q, &pTable, &B);
else {
double par[] = {R0, Qc, GVars.Alpha[side], GVars.M[side], W};
StdReflecFunc(q, par, &B);
}
if (B <= 0) { x += w_adj; y += h_adj; ABSORB; }
else p *= B;
x += w_adj; y += h_adj; SCATTER; x -= w_adj; y -= h_adj;
GVars.N_reflection[0]++;
/* go to the next reflection */
if (bounces > 1000) ABSORB;
} /* end for */
x += w_adj; y += h_adj; /* Re-adjust origin after SCATTER */
}
if (GVars.fc_freq != 0 || GVars.fc_phase != 0) { /* rotate back neutron w/r to guide element */
/* approximation of rotating straight Fermi Chopper */
Coords X = coords_set(x,y,z-l/2); /* current coordinates of neutron in centered static frame */
Rotation R;
rot_set_rotation(R, 0, angle, 0); /* will rotate back neutron: positive side */
/* apply rotation to centered coordinates */
Coords RX = rot_apply(R, X);
coords_get(RX, &x, &y, &z);
z = z+l/2;
/* rotate speed */
X = coords_set(vx,vy,vz);
RX = rot_apply(R, X);
coords_get(RX, &vx, &vy, &vz);
}
} /* if l */
#pragma acc atomic
GVarsGlobal.warnings = GVarsGlobal.warnings + GVars.warnings;
%}
FINALLY
%{
if (GVarsGlobal.warnings > 100) {
fprintf(stderr,"%s: warning: neutron has entered guide, but can not exit !\n", GVarsGlobal.compcurname);
fprintf(stderr,"%s: warning: This message has been repeated %g times\n", GVarsGlobal.compcurname, GVarsGlobal.warnings);
}
%}
MCDISPLAY
%{
if (l > 0 && nelements > 0) {
int i,j,n;
double x1,x2,x3,x4;
double y1,y2,y3,y4;
double nel = (nelements > 11 ? 11 : nelements);
for (n=0; n<nel; n++)
{
double z0, z1;
z0 = n*(l/nel);
z1 = (n+1)*(l/nel);
for(j = 0; j < nhslit; j++)
{
y1 = j*(GVarsGlobal.h1c+d) - h1/2.0;
y2 = j*(GVarsGlobal.h2c+d) - h2/2.0;
y3 = (j+1)*(GVarsGlobal.h1c+d) - d - h1/2.0;
y4 = (j+1)*(GVarsGlobal.h2c+d) - d - h2/2.0;
for(i = 0; i < nslit; i++)
{
x1 = i*(GVarsGlobal.w1c+d) - w1/2.0;
x2 = i*(GVarsGlobal.w2c+d) - w2/2.0;
x3 = (i+1)*(GVarsGlobal.w1c+d) - d - w1/2.0;
x4 = (i+1)*(GVarsGlobal.w2c+d) - d - w2/2.0;
// Visualize i'th channel with vertical polygons
polygon(4,
x1, y1, z0,
x2, y2, z1,
x2, y4, z1,
x1, y3, z0);
polygon(4,
x3, y1, z0,
x4, y2, z1,
x4, y4, z1,
x3, y3, z0);
}
// Visualize "floor/roof" of i'th channel with vertical polygons
polygon(4,-w1/2.0, y1, z0, w1/2.0, y1, z0, w2/2.0, y2, z1, -w2/2.0, y2, z1);
polygon(4,-w1/2.0, y3, z0, w1/2.0, y3, z0, w2/2.0, y4, z1, -w2/2.0, y4, z1);
}
}
if (nu || phase) {
double radius = sqrt(w1*w1+l*l);
/* cylinder top/center/bottom */
circle("xz", 0,-h1/2,l/2,radius);
circle("xz", 0,0 ,l/2,radius);
circle("xz", 0, h1/2,l/2,radius);
}
}
else {
/* A bit ugly; hard-coded dimensions. */
line(0,0,0,0.2,0,0);
line(0,0,0,0,0.2,0);
line(0,0,0,0,0,0.2);
}
%}
END
|