1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
/****************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Pol_guide_mirror
*
* %I
* Written by: Erik B Knudsen
* Date: July 2018
* Origin: DTU Physics
*
* Polarising guide with a supermirror along its diagonal.
*
* %D
* Based on Pol_guide_vmirror by P. Christiansen.
* Models a rectangular guide with entrance centered on the Z axis and
* with one supermirror sitting on the diagonal inside.
* The entrance lies in the X-Y plane. Draws a true depiction
* of the guide with mirror and trajectories.
* The polarisation is handled similar to in Monochromator_pol.
* The reflec functions are handled similar to Pol_mirror.
* The up direction is hardcoded to be along the y-axis (0, 1, 0)
*
* Note that this component can also be used as a frame overlap-mirror
* if the up and down reflectivities are set equal. In this case the wall
* reflectivity (rPar) should probably be set to 0.
*
* Reflectivity values can either come from datafiles or from
* sets of parameters to the standard analytic reflectivity function commonly
* used for neutron guides:
* R=R0; q<qc, R=(1-tanh((q-m qc)/W))(1-alpha(q-qc)).
* If a filename is specified for e.g. rData
* the datafile table overrides the analytic function.
*
* GRAVITY: YES
*
* %BUGS
* No absorption by mirror.
* The reflectivity parameters must be given as literal constants. Using variables
* will result in undefined behaviour.
*
* %P
* INPUT PARAMETERS:
*
* xwidth: [m] Width at the guide entry
* yheight: [m] Height at the guide entry
* length: [m] length of guide
* rData: [str] Guide Reflectivity data file
* rPar: [1] Guide Parameters for standard reflectivity function
* rUpData: [str] Mirror Reflectivity data file for spin up
* rUpPar: [1] Mirror Parameters for spin up standard reflectivity function
* rDownData: [str] Mirror Reflectivity data file for spin down
* rDownPar: [1] Mirror Parameters for spin down standard reflectivity function
* debug: [1] if debug > 0 print out some internal runtime parameters
*
* %L
*
* %E
*******************************************************************************/
DEFINE COMPONENT Pol_guide_mirror
SETTING PARAMETERS (
vector rUpPar={1.0, 0.0219, 4.07, 3.2, 0.003},
vector rDownPar={1.0, 0.0219, 4.07, 3.2, 0.003},
vector rPar={1.0, 0.0219, 4.07, 3.2, 0.003},
string rData="",string rUpData="",string rDownData="",
xwidth, yheight, length,
int debug=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "pol-lib"
%include "ref-lib"
%}
DECLARE
%{
Coords localG;
Coords normalTop;
Coords normalBot;
Coords normalLeft;
Coords normalRight;
Coords normalInOut;
Coords pointTop;
Coords pointBot;
Coords pointLeft;
Coords pointRight;
Coords pointIn;
Coords pointOut;
t_Table rTable;
t_Table rUpTable;
t_Table rDownTable;
int rTableFlag;
int rUpTableFlag;
int rDownTableFlag;
%}
INITIALIZE
%{
if (strlen(rData) && strcmp(rData,"NULL")){
if (Table_Read(&rTable, rData, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rPar);
exit(1);
}
rTableFlag=1;
}else{
rTableFlag=0;
}
if (strlen(rUpData) && strcmp(rUpData,"NULL")){
if (Table_Read(&rUpTable, rUpData, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rUpPar);
exit(1);
}
rUpTableFlag=1;
}else {
rUpTableFlag=0;
}
if (strlen(rDownData) && strcmp(rDownData,"NULL")){
if (Table_Read(&rDownTable, rDownData, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rDownPar);
exit(1);
}
rDownTableFlag=1;
}else{
rDownTableFlag=0;
}
if ((xwidth<=0) || (yheight<= 0) || (length<=0)) {
fprintf(stderr, "Pol_guide_mirror: %s: NULL or negative length scale!\n"
"ERROR (xwidth,yheight,length). Exiting\n",
NAME_CURRENT_COMP);
exit(1);
}
if (mcgravitation) {
localG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,-GRAVITY,0));
fprintf(stdout,"Pol_guide_mirror: %s: Gravity is on!\n",
NAME_CURRENT_COMP);
} else
localG = coords_set(0, 0, 0);
// To be able to handle the situation properly where a component of
// the gravity is along the z-axis we also define entrance (in) and
// exit (out) planes
// The entrance and exit plane are defined by the normal vector
// (0, 0, 1)
// and the two points pointIn=(0, 0, 0) and pointOut=(0, 0, length)
normalInOut = coords_set(0, 0, 1);
pointIn = coords_set(0, 0, 0);
pointOut = coords_set(0, 0, length);
// Top plane (+y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
// and the point (0, yheight/2, 0)
// A normal vector is (0, 1, 0)
normalTop = coords_set(0, 1, 0);
pointTop = coords_set(0, yheight/2, 0);
// Bottom plane (-y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
// and the point (0, -yheight/2, 0)
// A normal vector is (0, 1, 0)
normalBot = coords_set(0, 1, 0);
pointBot = coords_set(0, -yheight/2, 0);
// Left plane (+x dir) can be spanned by (0, 1, 0) & (0, 0, 1)
// and the point (xwidth/2, 0, 0)
// A normal vector is (1, 0, 0)
normalLeft = coords_set(1, 0, 0);
pointLeft = coords_set(xwidth/2, 0, 0);
// Right plane (-x dir) can be spanned by (0, 1, 0) & (0, 0, 1)
// and the point (-xwidth/2, 0, 0)
// A normal vector is (1, 0, 0)
normalRight = coords_set(1, 0, 0);
pointRight = coords_set(-xwidth/2, 0, 0);
%}
TRACE
%{
/* time threshold */
const double tThreshold = 1e-10/sqrt(vx*vx + vy*vy + vz*vz);
const double xwhalf = xwidth/2;
const double norm = 1.0/sqrt(xwidth*xwidth + length*length);
double R;
Coords normalMirror, pointMirror;
Coords* normalPointer = 0;
// Pol variables
double FN, FM, Rup, Rdown, refWeight;
/* Propagate neutron to guide entrance. */
PROP_Z0;
if (!inside_rectangle(x, y, xwidth, yheight))
ABSORB;
SCATTER;
normalMirror = coords_set(norm*length, 0, -norm*xwidth);
pointMirror = coords_set(-xwhalf, 0, 0);
for(;;) {
double tLeft, tRight, tTop, tBot, tIn, tOut, tMirror;
double tUp, tSide, time, endtime;
double Q; //, dummy1, dummy2, dummy3;
Coords vVec, xVec;
int mirrorReflect;
mirrorReflect = 0;
xVec = coords_set(x, y, z);
vVec = coords_set(vx, vy, vz);
solve_2nd_order(&tTop, NULL, 0.5*coords_sp(normalTop,localG),
coords_sp(normalTop, vVec),
coords_sp(normalTop, coords_sub(xVec, pointTop)));
solve_2nd_order(&tBot, NULL, 0.5*coords_sp(normalBot,localG),
coords_sp(normalBot, vVec),
coords_sp(normalBot, coords_sub(xVec, pointBot)));
solve_2nd_order(&tRight, NULL, 0.5*coords_sp(normalRight,localG),
coords_sp(normalRight, vVec),
coords_sp(normalRight, coords_sub(xVec, pointRight)));
solve_2nd_order(&tLeft, NULL, 0.5*coords_sp(normalLeft,localG),
coords_sp(normalLeft, vVec),
coords_sp(normalLeft, coords_sub(xVec, pointLeft)));
solve_2nd_order(&tIn, NULL, 0.5*coords_sp(normalInOut,localG),
coords_sp(normalInOut, vVec),
coords_sp(normalInOut, coords_sub(xVec, pointIn)));
solve_2nd_order(&tOut, NULL, 0.5*coords_sp(normalInOut,localG),
coords_sp(normalInOut, vVec),
coords_sp(normalInOut, coords_sub(xVec, pointOut)));
solve_2nd_order(&tMirror, NULL, 0.5*coords_sp(normalMirror,localG),
coords_sp(normalMirror, vVec),
coords_sp(normalMirror, coords_sub(xVec, pointMirror)));
double nx,ny,nz,px,py,pz;
coords_get(normalMirror,&nx,&ny,&nz);
coords_get(pointMirror,&px,&py,&pz);
plane_intersect(&tMirror, x,y,z,vx,vy,vz, nx, ny, nz, px, py, pz);
/* Choose appropriate reflection time */
if (tTop>tThreshold && (tTop<tBot || tBot<=tThreshold))
tUp=tTop;
else
tUp=tBot;
if (tLeft>tThreshold && (tLeft<tRight || tRight<=tThreshold))
tSide=tLeft;
else
tSide=tRight;
if (tUp>tThreshold && (tUp<tSide || tSide<=tThreshold))
time=tUp;
else
time=tSide;
if (tMirror>tThreshold && tMirror<time) {
time=tMirror;
mirrorReflect = 1; // flag to show which reflection function to use
}
if (time<=tThreshold)
fprintf(stdout, "Pol_guide_mirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
/* Has neutron left the guide? */
if (tOut>tThreshold && (tOut<tIn || tIn<=tThreshold))
endtime=tOut;
else
endtime=tIn;
if (time > endtime)
break;
if(time <= tThreshold) {
printf("Time below threshold!\n");
fprintf(stdout, "Pol_guide_mirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
break;
}
if(debug>0 && time==tLeft) {
fprintf(stdout, "\nPol_guide_mirror: %s: Left side hit: x, v, normal, point, gravity\n", NAME_CURRENT_COMP);
coords_print(xVec);
coords_print(vVec);
coords_print(normalLeft);
coords_print(pointLeft);
coords_print(localG);
fprintf(stdout, "\nA: %f, B: %f, C: %f, tLeft: %f\n",
0.5*coords_sp(normalLeft,localG),coords_sp(normalLeft, vVec),
coords_sp(normalLeft, coords_sub(xVec, pointLeft)), tLeft);
}
if(debug>0)
fprintf(stdout, "Pol_guide_mirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
if(debug>0)
fprintf(stdout, "Pol_guide_mirror: %s: Start v: (%f, %f, %f)\n", NAME_CURRENT_COMP, vx, vy, vz);
PROP_DT(time);
if (mcgravitation)
vVec = coords_set(vx, vy, vz);
if(time==tTop)
normalPointer = &normalTop;
else if(time==tBot)
normalPointer = &normalBot;
else if(time==tRight)
normalPointer = &normalRight;
else if(time==tLeft)
normalPointer = &normalLeft;
else if(time==tMirror)
normalPointer = &normalMirror;
else
fprintf(stderr, "Pol_guide_mirror: %s: This should never happen!!!!\n", NAME_CURRENT_COMP);
Q = 2*coords_sp(vVec, *normalPointer)*V2K;
if(!mirrorReflect) {
/* we have hit one of the sides. Always reflect. */
vVec = coords_add(vVec, coords_scale(*normalPointer, -Q*K2V));
if(rTableFlag){
refWeight=Table_Value(rTable, fabs(Q), 1);
}else{
StdReflecFunc(fabs(Q), rPar, &refWeight);
}
p *= refWeight;
SCATTER;
} else {
/* we have hit the mirror */
if(rUpTableFlag){
Rup=Table_Value(rUpTable,fabs(Q),1);
}else{
StdReflecFunc(fabs(Q), rUpPar, &Rup);
}
if(rDownTableFlag){
Rdown=Table_Value(rDownTable,fabs(Q),1);
}else{
StdReflecFunc(fabs(Q), rDownPar, &Rdown);
}
if (Rup < 0) ABSORB;
if (Rup > 1) Rup =1 ;
if (Rdown < 0) ABSORB;
if (Rdown > 1) Rdown =1 ;
GetMonoPolFNFM(Rup, Rdown, &FN, &FM);
GetMonoPolRefProb(FN, FM, sy, &refWeight);
// check that refWeight is meaningful
if (refWeight < 0) ABSORB;
if (refWeight > 1) refWeight =1 ;
if (rand01()<refWeight) {
vVec = coords_add(vVec, coords_scale(*normalPointer, -Q*K2V));
SetMonoPolRefOut(FN, FM, refWeight, &sx, &sy, &sz);
SCATTER;
} else {
SetMonoPolTransOut(FN, FM, refWeight, &sx, &sy, &sz);
}
if (sx*sx+sy*sy+sz*sz>1.000001) { // check that polarisation is meaningfull
fprintf(stderr, "Pol_guide_mirror: %s: polarisation |s|=%g > 1 s=[%g,%g,%g]\n",
NAME_CURRENT_COMP, sx*sx+sy*sy+sz*sz, sx, sy, sz);
}
}
if(p==0) {
ABSORB;
break;
}
// set new velocity vector
coords_get(vVec, &vx, &vy, &vz);
if(debug>0){
fprintf(stdout, "Pol_guide_mirror: %s: End v: (%f, %f, %f)\n", NAME_CURRENT_COMP, vx, vy, vz);
}
}
%}
MCDISPLAY
%{
int i, j;
// draw box
box(0, 0, length/2.0, xwidth, yheight, length,0, 0, 1, 0);
for(j = -1; j<=1; j+=2){
line(-xwidth/2.0, j*yheight/2, 0, xwidth/2.0, j*yheight/2, length);
}
%}
END
|