1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
/****************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Pol_guide_vmirror
*
* %I
* Written by: Peter Willendrup
* Date: June 2022
* Origin: DTU
*
* Polarising guide with nvs x 2 supermirrors sitting in v-shapes inside,
* upgraded from original single V-cavity.
*
* %D
* Models a rectangular guide with entrance centered on the Z axis and
* with nvs x two supermirrors sitting in v-shapes inside.
* The entrance lies in the X-Y plane. Draws a true depiction
* of the guide with mirrors, and trajectories.
* The polarisation is handled similar to in Monochromator_pol.
* The reflec functions are handled similar to Pol_mirror.
* The up direction is hardcoded to be along the y-axis (0, 1, 0)
*
* The reflectivity parameters can be
* 1. double pointer initializations with 5 parameters (e.g. {R0, Qc, alpha, m, W} AND inputType=0), or
* 2. double pointer initializations with 6 parameters (e.g. {R0, Qc, alpha, m, W, beta} AND inputType=0), or
* 3. table names (e.g."supermirror_m2.rfl" AND inputType=1), or
* 4. individually assigned values (e.g. rR0=1.0, rQc=0.0217, ... etc AND inputType=2).
* NB! This might cause warnings by the compiler that can be ignored.
* Note that the reflectivity functions that use with values and those that use tables are different.
*
* GRAVITY: YES
*
* %BUGS
* No absorption by mirror.
*
* %P
* INPUT PARAMETERS:
* •
* xwidth: [m] Width at the guide entry
* yheight: [m] Height at the guide entry
* length: [m] length of guide
*
* rFunc: [1] Cavity wall Reflection function
* rPar: [1] Cavity wall parameters array for rFunc, use with inputType = 0
* rParFile: [] Cavity wall parameters filename for rFunc, use with inputType = 1
* rR0: [1] Cavity wall reflectivity below critical scattering vector, use with inputType = 2
* rQc: [AA-1] Cavity wall reflectivity critical scattering vector, use natural Ni (m=1 definition) value of 0.0217, use with inputType = 2
* ralpha: [AA] Cavity wall slope of reflectivity, use with inputType = 2
* rmSM: [1] Cavity wall m-value of material. Zero means completely absorbing. Use with inputType = 2
* rW: [AA-1] Cavity wall width of reflectivity cut-off, use with inputType = 2
* rbeta: [AA2] Cavity wall curvature of reflectivity, use with inputType = 2
*
* rUpFunc: [1] Mirror Reflection function for spin up
* rUpPar: [1] Mirror Parameters array for rUpFunc, use with inputType = 0
* rUpParFile: [] Mirror Parameters filename for rUpFunc, use with inputType = 1
* rUpR0: [1] Mirror spin up reflectivity below critical scattering vector, use with inputType = 2
* rUpQc: [AA-1] Mirror spin up reflectivity critical scattering vector, use natural Ni (m=1 definition) value of 0.0217, use with inputType = 2
* rUpalpha:[AA] Mirror spin up slope of reflectivity, use with inputType = 2
* rUpmSM: [1] Mirror spin up m-value of material. Zero means completely absorbing. Use with inputType = 2
* rUpW: [AA-1] Mirror spin up width of reflectivity cut-off, use with inputType = 2
* rUpbeta: [AA2] Mirror spin up curvature of reflectivity, use with inputType = 2
*
* rDownFunc: [1] Mirror Reflection function for spin down
* rDownPar: [1] Mirror Parameters for rDownFunc, use with inputType = 0
* rDownParFile: [] Mirror Parameters filename for rDownFunc, use with inputType = 1
* rDownR0: [1] Mirror spin down reflectivity below critical scattering vector, use with inputType = 2
* rDownQc: [AA-1] Mirror spin down reflectivity critical scattering vector, use natural Ni (m=1 definition) value of 0.0217, use with inputType = 2
* rDownalpha: [AA] Mirror spin down slope of reflectivity, use with inputType = 2
* rDownmSM: [1] Mirror spin down m-value of material. Zero means completely absorbing. Use with inputType = 2
* rDownW: [AA-1] Mirror spin down width of reflectivity cut-off, use with inputType = 2
* rDownbeta: [AA2] Mirror spin down curvature of reflectivity, use with inputType = 2
*
* inputType: [1] Reflectivity parameters are 0: Values in array, 1: Table names, 2: Individual named values
* debug: [1] if debug > 0 print out some internal runtime parameters
* nvs: [1] Number of V-cavities across width of guide
*
* CALCULATED PARAMETERS:
*
* localG: [m/s/s] Gravity vector in guide reference system
* normalTop: [1] One of several normal vectors used for defining the geometry
* pointTop: [1] One of several points used for defining the geometry
* rParPtr: One of several pointers to reflection parameters used with the ref. functions. []
* SCATTERED: [] is 1 for reflected, and 2 for transmitted neutrons
*
*
* %L
*
* %E
*******************************************************************************/
DEFINE COMPONENT Pol_guide_vmirror
SETTING PARAMETERS (int nvs=1,xwidth=0.1, yheight=0.1, length=0.5,
rR0=1.0, rQc=0.0217, ralpha=6.5, rmSM=2, rW=0.00157, rbeta=80,
rUpR0=1.0, rUpQc=0.0217, rUpalpha=2.47, rUpmSM=4, rUpW=0.0014, rUpbeta=0,
rDownR0=1.0, rDownQc=0.0217, rDownalpha=1, rDownmSM=0.65, rDownW=0.003, rDownbeta=0,
int debug=0, allow_inside_start=0,
vector rPar={1.0, 0.0217, 6.5, 2, 0.00157, 80},
vector rUpPar={1.0, 0.0217, 2.47, 4, 0.0014},
vector rDownPar={1.0, 0.0217, 1, 0.65, 0.003},
string rParFile = "",
string rUpParFile = "",
string rDownParFile = "",
int inputType=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "pol-lib"
%include "ref-lib"
%}
DECLARE
%{
Coords localG;
Coords normalTop;
Coords normalBot;
Coords normalLeft;
Coords normalRight;
Coords normalInOut;
Coords pointTop;
Coords pointBot;
Coords pointLeft;
Coords pointRight;
Coords pointIn;
Coords pointOut;
Coords* mirrorNormals;
Coords* mirrorPoints;
double xwhalf;
double xwfull;
double norm;
int n_index;
int i_index;
double rParToFunc[6];
double rUpParToFunc[6];
double rDownParToFunc[6];
t_Table rParPtr;
t_Table rUpParPtr;
t_Table rDownParPtr;
%}
INITIALIZE
%{
if (inputType == 0) {
//copy the SM reflectivity input parameter array r..Par to array r..ParToFunc
//the input array can be 5 parameters, i.e. without beta, then beta=0
//or it can be 6 parameters, including the value for beta.
//r..ParToFunc is sent to the reflectivity functions
for (i_index=0; i_index < 6; i_index++)
{
rParToFunc[i_index] = 0;
rUpParToFunc[i_index] = 0;
rDownParToFunc[i_index] = 0;
}
n_index = sizeof(rPar)/sizeof(rPar[0]);
for (i_index=0; i_index < n_index; i_index++)
{
rParToFunc[i_index] = rPar[i_index];
}
n_index = sizeof(rUpPar)/sizeof(rUpPar[0]);
for (i_index=0; i_index < n_index; i_index++)
{
rUpParToFunc[i_index] = rUpPar[i_index];
}
n_index = sizeof(rDownPar)/sizeof(rDownPar[0]);
for (i_index=0; i_index < n_index; i_index++)
{
rDownParToFunc[i_index] = rDownPar[i_index];
}
} else if (inputType == 1) {
if (Table_Read(&rParPtr, rParFile, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rPar);
exit(1);
}
if (Table_Read(&rUpParPtr, rUpParFile, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rUpPar);
exit(1);
}
if (Table_Read(&rDownParPtr, rDownParFile, 1) <= 0) {
fprintf(stderr,"Pol_guide_vmirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rDownPar);
exit(1);
}
fprintf(stderr, "Pol_guide_vmirror: %s: Reading files is not possible!\n",
NAME_CURRENT_COMP);
exit(1);
} else if (inputType == 2) {
//Assemble the parameter array r..ParToFunc from the individual parameters
//r..ParToFunc is sent to the reflectivity functions
for (i_index=0; i_index < 6; i_index++) {
rParToFunc[i_index] = 0;
rUpParToFunc[i_index] = 0;
rDownParToFunc[i_index] = 0;
}
rParToFunc[0] = rR0;
rParToFunc[1] = rQc;
rParToFunc[2] = ralpha;
rParToFunc[3] = rmSM;
rParToFunc[4] = rW;
rParToFunc[5] = rbeta;
rUpParToFunc[0] = rUpR0;
rUpParToFunc[1] = rUpQc;
rUpParToFunc[2] = rUpalpha;
rUpParToFunc[3] = rUpmSM;
rUpParToFunc[4] = rUpW;
rUpParToFunc[5] = rUpbeta;
rDownParToFunc[0] = rDownR0;
rDownParToFunc[1] = rDownQc;
rDownParToFunc[2] = rDownalpha;
rDownParToFunc[3] = rDownmSM;
rDownParToFunc[4] = rDownW;
rDownParToFunc[5] = rDownbeta;
}
if ((xwidth<=0) || (yheight<= 0) || (length<=0)) {
fprintf(stderr, "Pol_guide_vmirror: %s: NULL or negative length scale!\n"
"ERROR (xwidth,yheight,length). Exiting\n",
NAME_CURRENT_COMP);
exit(1);
}
if (mcgravitation) {
localG = rot_apply(ROT_A_CURRENT_COMP, coords_set(0,-GRAVITY,0));
fprintf(stdout,"Pol_guide_vmirror: %s: Gravity is on!\n",
NAME_CURRENT_COMP);
} else
localG = coords_set(0, 0, 0);
// To be able to handle the situation properly where a component of
// the gravity is along the z-axis we also define entrance (in) and
// exit (out) planes
// The entrance and exit plane are defined by the normal vector
// (0, 0, 1)
// and the two points pointIn=(0, 0, 0) and pointOut=(0, 0, length)
normalInOut = coords_set(0, 0, 1);
pointIn = coords_set(0, 0, 0);
pointOut = coords_set(0, 0, length);
// Top plane (+y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
// and the point (0, yheight/2, 0)
// A normal vector is (0, 1, 0)
normalTop = coords_set(0, 1, 0);
pointTop = coords_set(0, yheight/2, 0);
// Bottom plane (-y dir) can be spanned by (1, 0, 0) & (0, 0, 1)
// and the point (0, -yheight/2, 0)
// A normal vector is (0, 1, 0)
normalBot = coords_set(0, 1, 0);
pointBot = coords_set(0, -yheight/2, 0);
// Left plane (+x dir) can be spanned by (0, 1, 0) & (0, 0, 1)
// and the point (xwidth/2, 0, 0)
// A normal vector is (1, 0, 0)
normalLeft = coords_set(1, 0, 0);
pointLeft = coords_set(xwidth/2, 0, 0);
// Right plane (-x dir) can be spanned by (0, 1, 0) & (0, 0, 1)
// and the point (-xwidth/2, 0, 0)
// A normal vector is (1, 0, 0)
normalRight = coords_set(1, 0, 0);
pointRight = coords_set(-xwidth/2, 0, 0);
mirrorNormals = malloc(2*nvs*sizeof(Coords));
mirrorPoints = malloc(2*nvs*sizeof(Coords));
/* Split in odd and even nvs cases */
xwhalf = xwidth/(2*nvs);
xwfull = xwidth/nvs;
norm = 1.0/sqrt(xwhalf*xwhalf + length*length);
/* For "all-mirror" solution: */
/* double dx; */
/* if (nvs % 2) { */
/* /\* Odd number of cavities *\/ */
/* dx=0; */
/* } else { */
/* /\* Even number of cavities *\/ */
/* dx=xwhalf; */
/* } */
/* int counter; */
/* for (counter=1; counter <= nvs; counter++) { */
/* /\* Put in the mirror point locations *\/ */
/* mirrorPoints[2*counter-2] = coords_set(-(dx+counter*xwfull), 0, 0); */
/* mirrorPoints[2*counter-1] = coords_set((dx+counter*xwfull), 0, 0); */
/* normalMirror1 = coords_set(norm*length, 0, -norm*xwhalf); */
/* } */
%}
TRACE
%{
double R;
int sgn, ivs;
/* time threshold */
double tThreshold = 1e-10/sqrt(vx*vx + vy*vy + vz*vz);
Coords normalMirror1, pointMirror1;
Coords normalMirror2, pointMirror2;
Coords* normalPointer = 0;
// Pol variables
double FN, FM, Rup, Rdown, refWeight;
if(!allow_inside_start || z<0){
/* Propagate neutron to guide entrance. */
PROP_Z0;
}
if (!inside_rectangle(x, y, xwidth, yheight))
ABSORB;
if (debug) printf("-........-\n");
for(;;) {
double tLeft, tRight, tTop, tBot, tIn, tOut, tMirror1, tMirror2;
double tUp, tSide, time, endtime;
double Q; //, dummy1, dummy2, dummy3;
Coords vVec, xVec;
int mirrorReflect;
/* Hal parametrization */
int N,m,Total;
double downmirror,upmirror;
Total = nvs;
N = floor(fabs(x)/xwhalf);
/* if N == total, exge case ... */
m = 1 - (Total - floor(Total/2.0)*2);
if (debug) printf("Total=%i m=%i",Total,m);
if (debug) printf("neutron is in N=%i and m=%i\n",N,m);
sgn = x/(fabs(x));
if (sgn>0) {
downmirror = (floor((N+m)/2.0)*xwfull - m * xwhalf)*sgn;
upmirror = ((floor((N+m)/2.0)+1)*xwfull - m * xwhalf)*sgn;
} else {
upmirror = (floor((N+m)/2.0)*xwfull - m * xwhalf)*sgn;
downmirror = ((floor((N+m)/2.0)+1)*xwfull - m * xwhalf)*sgn;
}
if (debug) printf("Found downmirror=%g , x=%g and upmirror=%g\n",downmirror,x,upmirror);
normalMirror1 = coords_set(norm*length, 0, norm*xwhalf);
pointMirror1 = coords_set(upmirror, 0, 0);
normalMirror2 = coords_set(norm*length, 0, -norm*xwhalf);
pointMirror2 = coords_set(downmirror, 0, 0);
if (debug) printf("Normal down=%g ,and up=%g with sign=%i\n",norm*xwhalf,-norm*xwhalf,sgn);
/* ivs = floor(fabs(x)/(2*xwhalf));
normalMirror1 = coords_set(norm*length, 0, -norm*xwhalf);
pointMirror1 = coords_set(sgn*ivs*xwhalf, 0, 0);
normalMirror2 = coords_set(norm*length, 0, norm*xwhalf);
pointMirror2 = coords_set(sgn*ivs*xwhalf, 0, 0);*/
mirrorReflect = 0;
xVec = coords_set(x, y, z);
vVec = coords_set(vx, vy, vz);
solve_2nd_order(&tTop, NULL, 0.5*coords_sp(normalTop,localG),
coords_sp(normalTop, vVec),
coords_sp(normalTop, coords_sub(xVec, pointTop)));
solve_2nd_order(&tBot, NULL, 0.5*coords_sp(normalBot,localG),
coords_sp(normalBot, vVec),
coords_sp(normalBot, coords_sub(xVec, pointBot)));
solve_2nd_order(&tRight, NULL, 0.5*coords_sp(normalRight,localG),
coords_sp(normalRight, vVec),
coords_sp(normalRight, coords_sub(xVec, pointRight)));
solve_2nd_order(&tLeft, NULL, 0.5*coords_sp(normalLeft,localG),
coords_sp(normalLeft, vVec),
coords_sp(normalLeft, coords_sub(xVec, pointLeft)));
solve_2nd_order(&tIn, NULL, 0.5*coords_sp(normalInOut,localG),
coords_sp(normalInOut, vVec),
coords_sp(normalInOut, coords_sub(xVec, pointIn)));
solve_2nd_order(&tOut, NULL, 0.5*coords_sp(normalInOut,localG),
coords_sp(normalInOut, vVec),
coords_sp(normalInOut, coords_sub(xVec, pointOut)));
solve_2nd_order(&tMirror1, NULL, 0.5*coords_sp(normalMirror1,localG),
coords_sp(normalMirror1, vVec),
coords_sp(normalMirror1, coords_sub(xVec, pointMirror1)));
solve_2nd_order(&tMirror2, NULL, 0.5*coords_sp(normalMirror2,localG),
coords_sp(normalMirror2, vVec),
coords_sp(normalMirror2, coords_sub(xVec, pointMirror2)));
/* Choose appropriate reflection time */
if (tTop>tThreshold && (tTop<tBot || tBot<=tThreshold))
tUp=tTop;
else
tUp=tBot;
if (tLeft>tThreshold && (tLeft<tRight || tRight<=tThreshold))
tSide=tLeft;
else
tSide=tRight;
if (tUp>tThreshold && (tUp<tSide || tSide<=tThreshold))
time=tUp;
else
time=tSide;
if (tMirror1>tThreshold && tMirror1<time) {
time=tMirror1;
mirrorReflect = 1; // flag to show which reflection function to use
}
if (tMirror2>tThreshold && tMirror2<time) {
time=tMirror2;
mirrorReflect = 2; // flag to show which reflection function to use
}
if (time<=tThreshold)
fprintf(stdout, "Pol_guide_vmirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
/* Has neutron left the guide? */
if (tOut>tThreshold && (tOut<tIn || tIn<=tThreshold))
endtime=tOut;
else
endtime=tIn;
if (time > endtime)
break;
if(time <= tThreshold) {
printf("Time below threshold!\n");
fprintf(stdout, "Pol_guide_vmirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
break;
}
if(debug>0 && time==tLeft) {
fprintf(stdout, "\nPol_guide_vmirror: %s: Left side hit: x, v, normal, point, gravity\n", NAME_CURRENT_COMP);
coords_print(xVec);
coords_print(vVec);
coords_print(normalLeft);
coords_print(pointLeft);
coords_print(localG);
fprintf(stdout, "\nA: %f, B: %f, C: %f, tLeft: %f\n",
0.5*coords_sp(normalLeft,localG),coords_sp(normalLeft, vVec),
coords_sp(normalLeft, coords_sub(xVec, pointLeft)), tLeft);
}
if(debug>0)
fprintf(stdout, "Pol_guide_vmirror: %s: tTop: %f, tBot:%f, tRight: %f, tLeft: %f\n"
"tUp: %f, tSide: %f, time: %f\n", NAME_CURRENT_COMP,
tTop, tBot, tRight, tLeft, tUp, tSide, time);
if(debug>0)
fprintf(stdout, "Pol_guide_vmirror: %s: Start v: (%f, %f, %f)\n", NAME_CURRENT_COMP, vx, vy, vz);
PROP_DT(time);
if (mcgravitation)
vVec = coords_set(vx, vy, vz);
SCATTER;
if(time==tTop)
normalPointer = &normalTop;
else if(time==tBot)
normalPointer = &normalBot;
else if(time==tRight)
normalPointer = &normalRight;
else if(time==tLeft)
normalPointer = &normalLeft;
else if(time==tMirror1)
normalPointer = &normalMirror1;
else if(time==tMirror2)
normalPointer = &normalMirror2;
else
fprintf(stderr, "Pol_guide_vmirror: %s: This should never happen!!!!\n", NAME_CURRENT_COMP);
Q = 2*coords_sp(vVec, *normalPointer)*V2K;
if(!mirrorReflect) {
// we have hit one of the sides. Always reflect.
vVec = coords_add(vVec, coords_scale(*normalPointer, -Q*K2V));
StdReflecFunc(fabs(Q), rParToFunc, &refWeight);
p *= refWeight;
} else {
// we have hit one of the mirrors
StdDoubleReflecFunc(fabs(Q), rUpParToFunc, &Rup);
StdDoubleReflecFunc(fabs(Q), rDownParToFunc, &Rdown);
if (Rup < 0) ABSORB;
if (Rup > 1) Rup =1 ;
if (Rdown < 0) ABSORB;
if (Rdown > 1) Rdown =1 ;
GetMonoPolFNFM(Rup, Rdown, &FN, &FM);
GetMonoPolRefProb(FN, FM, sy, &refWeight);
// check that refWeight is meaningfull
if (refWeight < 0) ABSORB;
if (refWeight > 1) refWeight =1 ;
if (rand01()<refWeight) {
//reflect: SCATTERED==1 for reflection
vVec = coords_add(vVec, coords_scale(*normalPointer, -Q*K2V));
SetMonoPolRefOut(FN, FM, refWeight, &sx, &sy, &sz);
} else {
// transmit: SCATTERED==2 for transmission
SCATTER;
SetMonoPolTransOut(FN, FM, refWeight, &sx, &sy, &sz);
}
if (sx*sx+sy*sy+sz*sz>1.000001) { // check that polarisation is meaningful
fprintf(stderr, "Pol_guide_vmirror: %s: polarisation |s|=%g > 1 s=[%g,%g,%g]\n",
NAME_CURRENT_COMP, sx*sx+sy*sy+sz*sz, sx, sy, sz);
}
}
if(p==0) {
ABSORB;
break;
}
// set new velocity vector
coords_get(vVec, &vx, &vy, &vz);
if(debug>0)
fprintf(stdout, "Pol_guide_vmirror: %s: End v: (%f, %f, %f)\n", NAME_CURRENT_COMP, vx, vy, vz);
}
%}
FINALLY
%{
free(mirrorNormals);
free(mirrorPoints);
%}
MCDISPLAY
%{
int i, j;
double dx = xwidth/(2*nvs);
// draw box
box(0, 0, length/2.0, xwidth, yheight, length,0, 0, 1, 0);
for(i = -nvs; i<=nvs; i+=2)
for(j = -1; j<=1; j+=2) {
double dx2 = (i+j)*dx;
if (dx2 < -xwidth/2.0) dx2 = -xwidth/2.0;
if (dx2 > xwidth/2.0) dx2 = xwidth/2.0;
line(dx2, j*yheight/2, 0, i*dx, j*yheight/2, length);
}
%}
END
|