1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/****************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Pol_mirror
*
* %I
* Written by: Peter Christiansen
* Date: July 2006
* Origin: RISOE
*
* Polarising mirror.
*
* %D
* This component models a rectangular infinitely thin mirror.
* For an unrotated component, the mirror surface lies in the Y-Z
* plane (ie. parallel to the beam).
* It relies on similar physics as the Monochromator_pol.
* The reflectivity function (see e.g. share/ref-lib for examples) and parameters
* are passed to this component to give a bigger freedom.
* The up direction is hardcoded to be along the y-axis (0, 1, 0)
* IMPORTANT: At present the component only works correctly for polarization along the up/down
* direction and for completely unpolarized beams, i.e. sx=sy=sz=0 for all rays.
*
* For now we assume:
* P(Transmit|Q) = 1 - P(Reflect|Q)
* i.e. NO ABSORPTION!
*
*
* The component can both reflect and transmit neutrons with a respective proportion
* depending on the p_reflect parameter:
* p_reflect=-1 Reflect and transmit (proportions given from reflectivity) [default]
* p_reflect=1 Only handle reflected events
* p_reflect=0 Only handle transmitted events (reduce weight)
* p_reflect=0-1 Both transmit and reflect with fixed statistics proportions
*
* The parameters can either be
* double pointer initializations (e.g. {R0, Qc, alpha, m, W})
* or table names (e.g."supermirror_m2.rfl" AND useTables=1).
* NB! This might cause warnings by the compiler that can be ignored.
*
* Examples:
* Reflection function parametrization
* Pol_mirror(zwidth = 0.40, yheight = 0.40, rUpFunc=StdReflecFunc, rUpPar={1.0, 0.0219, 6.07, 2.0, 0.003})
*
* Table function
* Pol_mirror(zwidth = 0.40, yheight = 0.40, rUpFunc=TableReflecFunc, rUpPar="supermirror_m2.rfl", rDownFunc=TableReflecFunc, rDownPar="supermirror_m3.rfl", useTables=1)
*
* See also the example instrument Test_Pol_Mirror (under tests).
*
* GRAVITY: YES
*
* %BUGS
* NO ABSORPTION
*
* %P
* INPUT PARAMETERS:
*
* zwidth: [m] Width of the mirror
* yheight: [m] Height of the mirror
* rUpFunc: [1] Reflection function for spin up (q, *par, *r)
* rUpPar: [1] Parameters for rUpFunc
* rDownFunc: [1] Reflection function for spin down (q, *par, *r)
* rDownPar: [1] Parameters for rDownFunc
* rUpData: [str] Mirror Reflectivity data file for spin up
* rDownData: [str] Mirror Reflectivity data file for spin down
* useTables: [1] Parameters are 0: Values, 1: Table names
* p_reflect: [1] Proportion of reflected events. Use 0 to only get the transmitted beam, and 1 to get only the reflected beam. Use -1 to use the mirror reflectivity. This value is purely computational and is not related to the actual reflectivity
*
* CALCULATED PARAMETERS:
* SCATTERED: [] is 1 for reflected, and 2 for transmitted neutrons
*
* %L
*
* %E
*******************************************************************************/
DEFINE COMPONENT Pol_mirror
SETTING PARAMETERS (
vector rUpPar={0.99,0.0219,6.07,2.0,0.003},
vector rDownPar={0.99,0.0219,6.07,2.0,0.003},
string rUpData="", string rDownData="",
p_reflect=-1,
zwidth,
yheight)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "pol-lib"
%include "ref-lib"
%}
DECLARE
%{
t_Table rUpTable;
int rUpTableFlag;
t_Table rDownTable;
int rDownTableFlag;
%}
INITIALIZE
%{
if (strlen(rUpData) && strcmp(rUpData,"NULL")){
if (Table_Read(&rUpTable, rUpData, 1) <= 0) {
fprintf(stderr,"Pol_mirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rUpPar);
exit(1);
}
rUpTableFlag=1;
}else{
rUpTableFlag=0;
}
if (strlen(rUpData) && strcmp(rUpData,"NULL")){
if (Table_Read(&rDownTable, rDownData, 1) <= 0) {
fprintf(stderr,"Pol_mirror: %s: can not read file %s\n",
NAME_CURRENT_COMP, rDownPar);
exit(1);
}
rDownTableFlag=1;
}else{
rDownTableFlag=0;
}
if ((zwidth<=0) || (yheight <= 0)) {
fprintf(stderr, "Pol_mirror: %s: NULL or negative length scale!\n"
"ERROR (zwidth=%g,yheight=%g). Exiting\n",
NAME_CURRENT_COMP, zwidth, yheight);
exit(1);
}
%}
TRACE
%{
double Q, Rup, Rdown, FN, FM, refWeight;
int reflect = -1;
int isPolarising = 0;
// propagate to mirror plane
PROP_X0;
if (inside_rectangle(z, y, zwidth, yheight)) {/* Intersect the crystal? */
// calculate scattering vector magnitude
Q = fabs(2*vx*V2K);
// calculate reflection probability
// downgraded from defpars version
//rUpFunc(Q, rUpParPtr, &Rup);
if(rUpTableFlag){
Rup=Table_Value(rUpTable,Q,1);
}else{
StdReflecFunc(Q, rUpPar, &Rup);
}
// downgraded from defpars version
//rDownFunc(Q, rDownParPtr, &Rdown);
if(rDownTableFlag){
Rdown=Table_Value(rDownTable,Q,1);
}else{
StdReflecFunc(Q, rDownPar, &Rdown);
}
if(Rup != Rdown) {
isPolarising = 1;
GetMonoPolFNFM(Rup, Rdown, &FN, &FM);
GetMonoPolRefProb(FN, FM, sy, &refWeight);
/* Output of PW discussions with Hal Lee 2024/03/08
We have now done our QM "measurement", thus
forcing the spin to assume up/down: */
sx=0; sz=0;
} else
refWeight = Rup;
// check that refWeight is meaningfull
if (refWeight < 0) ABSORB;
if (refWeight > 1) refWeight =1 ;
// find out if neutrons is reflected or transmitted
if (p_reflect < 0 || p_reflect > 1) { // reflect OR transmit using mirror reflectivity
if (rand01()<refWeight) //reflect
reflect = 1;
else
reflect = 0;
} else { // reflect OR transmit using a specified weighting
if (rand01()<p_reflect) {
reflect = 1; // reflect
p *= refWeight/p_reflect;
} else {
reflect = 0; // transmit
p *= (1-refWeight)/(1-p_reflect);
}
}
// set outgoing velocity and polarisation
if (reflect==1) { // reflect: SCATTERED==1 for reflection
vx = -vx;
if(isPolarising)
SetMonoPolRefOut(FN, FM, refWeight, &sx, &sy, &sz);
} else { // transmit: SCATTERED==2 for transmission
if(isPolarising)
SetMonoPolTransOut(FN, FM, refWeight, &sx, &sy, &sz);
SCATTER;
}
if(isPolarising)
if(sx*sx+sy*sy+sz*sz>1.000001)
fprintf(stderr,"Pol_mirror: %s: Warning: polarisation |s| = %g > 1\n",
NAME_CURRENT_COMP, sx*sx+sy*sy+sz*sz); // check that polarisation is meaningfull
SCATTER;
} /* End intersect the mirror */
else
{
/* neutron will miss the mirror, so don't propagate i.e restore it */
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
}
%}
MCDISPLAY
%{
rectangle("yz", 0, 0, 0, zwidth, yheight);
%}
END
|