1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2007, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Rotator
*
* %I
*
* Written by: Emmanuel Farhi
* Date: June 20th 2013
* Origin: <a href="http://www.ill.fr">ILL</a>
*
* A rotative frame along vertical axis
*
* %Description
* All components positioned after this one are rotating at frequency 'nu' with
* phase 'phase'. Use the Derotator component to put back the model steady.
* The rotation is performed w.r.t. the position of the component, along a chosen
* main axis (use directon=1 for x, direction=2 for y, direction=3 for z).
*
* Default rotation axis is vertical axis / 'y'.
*
* Example:
* R=Rotator(nu=14, phase=0)
* ...
* DR=Derotator(rotator=R)
* AT (0,0,0) RELATIVE R
*
* %Parameters
* INPUT PARAMETERS:
* nu: [Hz] Rotation frequency (round/s) in the rotating option (vertical axis)
* phase: [deg] Phase shift
* direction: [1] Rotation axis selection 1=x, 2=y, 3=z
*
* CALCULATED PARAMETERS:
* angle: [deg] rotation angle
*
* %End
*******************************************************************************/
DEFINE COMPONENT Rotator
SETTING PARAMETERS (nu=0, phase=0, int direction=2)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
USERVARS
%{
Rotation Rot;
%}
DECLARE
%{
char rot_var[20];
%}
INITIALIZE
%{
if (direction <= 0 || direction > 3) {
fprintf(stderr,"%s: Please indicate direction=1,2 or 3 (x,y or z)\n",NAME_CURRENT_COMP,direction);
exit(-1);
}
/* Initialize uservar string */
sprintf(rot_var,"Rot_%i",_comp->_index);
%}
TRACE
%{
if (nu != 0 || phase != 0) { /* rotate neutron w/r to position of component */
/* approximation of rotating frame */
/* current coordinates of neutron in centered static frame */
double dt=0;
double angle;
Rotation R;
dt = -z/vz; /* time shift to center of component */
angle = fmod(360*nu*(t+dt)+phase, 360); /* in deg */
double rx=0,ry=0,rz=0;
/* will rotate neutron instead of comp: negative side */
if (direction==1) {
rx=-angle*DEG2RAD;
}
else if (direction==2) {
ry=-angle*DEG2RAD;
}
else if (direction==3) {
rz=-angle*DEG2RAD;
}
rot_set_rotation(R, rx, ry, rz);
/* apply rotation to centered coordinates */
Coords tmp = coords_set(x,y,z);
coords_get(rot_apply(R, tmp), &x, &y, &z);
/* rotate speed */
tmp = coords_set(vx,vy,vz);
coords_get(rot_apply(R, tmp), &vx, &vy, &vz);
particle_setvar_void(_particle, rot_var, &(R));
}
%}
MCDISPLAY
%{
int ih;
if (nu || phase) {
double radius = 0.1;
/* cylinder to visualise the rotating frame */
circle("xz", 0, 0, 0,radius);
}
%}
END
|