1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2014, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Monitor_Sqw
*
* %Identification
* Written by: <a href="mailto:farhi@ill.fr">Emmanuel Farhi</a>
* Date: 31 jan 2014.
* Origin: <a href="http://www.ill.fr">ILL</a>
*
* This component is a Sqw Monitor that records the dynamic structure factor S(q,w)
* from a scattering location, seen from a detector location.
*
* %Description
* This component is a specialized Monitor_nD variation, which records the S(q,w)
* scattering law. It accepts about the same parameters as the Monitor_nD, but makes
* use of the 'q' and 'w' user variables. The neutrons are restored in their previous
* state after neing detected (restore_neutron=1).
*
* The monitor records the intensity as a function of q=kf-ki and w=Ef-Ei were the
* 'f' refers to the component location, and the 'i' refers to the component located
* at 'index' relative to the component location.
*
* The component uses automatic limits, and is thus not recommended with MPI/multiprocessing.
* In this case, the limits should be set manually, e.g. user1=q and user2=w
* options="user1 limits=[0 10] bins=100, user2 limits=[-50 50] bins=200"
*
* A usage example is for instance:
* COMPONENT sample = Isotropic_Sqw(...)
*
* COMPONENT sqw = Monitor_Sqw(index=-1, radius=2, yheight=2, bins=128)
*
* This component can be used to generate dynamic structure factors comvolved with
* the instrument response, and compare with molecular dynamics results (using e.g. nMoldyn).
* The incoming beam (e.g. at the sample) must be monochromatic.
*
* %Parameters
* INPUT PARAMETERS:
*
* xwidth: [m] Width of detector.
* yheight: [m] Height of detector.
* zdepth: [m] Thickness of detector (z).
* radius: [m] Radius of sphere/banana shape monitor
* options: [str] String that specifies the configuration of the monitor The general syntax is "[x] options..." (see <b>Descr.</b>).
* index: [1] Index of the component where scattering occurs with respect to the location of the Monitor_Sqw location in the instrument description. The index is usually negative, and should point to e.g. a Isotropic_Sqw, , PowderN, or Single_crystal instance. index=-1 for the previous component.
*
* Optional input parameters (override xwidth yheight zdepth):
* xmin: [m] Lower x bound of opening
* xmax: [m] Upper x bound of opening
* ymin: [m] Lower y bound of opening
* ymax: [m] Upper y bound of opening
* zmin: [m] Lower z bound of opening
* zmax: [m] Upper z bound of opening
* filename: [str] Output file name. If not set an automatic file name is used.
* bins: [1] Number of bins to force for all variables. Use 'bins' keyword in 'options' for heterogeneous bins
* geometry: [str] Name of an OFF file to specify a complex geometry detector
* nowritefile: [1] If set, monitor will skip writing to disk
*
* CALCULATED PARAMETERS:
*
* DEFS: [struct] structure containing Monitor_nD Defines
* Vars: [struct] structure containing Monitor_nD variables
*
* %Link
* <a href="Monitor_nD.html">Monitor_nD</a>
* <a href="../examples/Test_Monitor_Sqw.html">Test_Monitor_Sqw</a>
* <a href="http://forge.ill.fr/projects/nmoldyn/">nMoldyn</a>
*
* %End
******************************************************************************/
DEFINE COMPONENT Monitor_Sqw
SETTING PARAMETERS (symbol user3=FLT_MAX,
xwidth=0, yheight=0, zdepth=0,
xmin=0, xmax=0, ymin=0, ymax=0, zmin=0, zmax=0, radius=0,
bins=0, min=-1e40, max=1e40,
int index=-1, string options=0, string filename=0, string geometry=0, int nowritefile=0,
string username3=0)
/* these are protected C variables */
SHARE
%{
%include "monitor_nd-lib"
%}
DECLARE
%{
MonitornD_Defines_type DEFS;
MonitornD_Variables_type Vars;
MCDETECTOR detector;
off_struct offdata;
double mean_vx;
double mean_vy;
double mean_vz;
double sum_p;
%}
INITIALIZE
%{
char tmp[CHAR_BUF_LENGTH];
strcpy(Vars.compcurname, NAME_CURRENT_COMP);
if (options != NULL)
strncpy(Vars.option, options, CHAR_BUF_LENGTH);
if (!strstr(Vars.option, "user1"))
strncat(Vars.option," user1", CHAR_BUF_LENGTH);
if (!strstr(Vars.option, "user2"))
strncat(Vars.option," user2", CHAR_BUF_LENGTH);
if (!strstr(Vars.option, "limits") && !strstr(Vars.option, "auto"))
strncat(Vars.option," all auto", CHAR_BUF_LENGTH);
strncat(Vars.option," borders", CHAR_BUF_LENGTH);
Vars.compcurpos = POS_A_CURRENT_COMP;
if (bins && !strstr(Vars.option, "bins")) {
sprintf(tmp, " all bins=%ld ", (long)bins); strncat(Vars.option, tmp, CHAR_BUF_LENGTH);
}
if (min > -FLT_MAX && max < FLT_MAX && !strstr(Vars.option, "limits")) {
sprintf(tmp, " all limits=[%g %g]", min, max); strncat(Vars.option, tmp, CHAR_BUF_LENGTH);
}
else if (min > -FLT_MAX) {
sprintf(tmp, " all min=%g", min); strncat(Vars.option, tmp, CHAR_BUF_LENGTH);
}
else if (max < FLT_MAX) {
sprintf(tmp, " all max=%g", max); strncat(Vars.option, tmp, CHAR_BUF_LENGTH);
}
strcpy(Vars.UserName1, "Momentum transfer Q [Angs-1]");
strcpy(Vars.UserName2, "Energy transfer w [meV]");
strncpy(Vars.UserName3, username3 && strlen(username3) ? username3 : "", 128);
if (radius) {
xwidth = zdepth = 2*radius;
if (yheight && !strstr(Vars.option, "cylinder") && !strstr(Vars.option, "banana"))
strncat(Vars.option, " banana", CHAR_BUF_LENGTH);
else if (!yheight && !strstr(Vars.option ,"sphere")) {
strncat(Vars.option, " sphere", CHAR_BUF_LENGTH);
yheight=2*radius;
}
}
int offflag=0;
if (geometry && strlen(geometry) && strcmp(geometry,"NULL") && strcmp(geometry,"0"))
if (!off_init( geometry, xwidth, yheight, zdepth, 0, &offdata )) {
printf("Monitor_Sqw: %s could not initiate the OFF geometry. \n"
" Defaulting to normal Monitor dimensions.\n", NAME_CURRENT_COMP);
strcpy(geometry, "");
} else {
offflag=1;
}
if (!radius && !xwidth && !yheight && !zdepth && !xmin && !xmax && !ymin && !ymax && !strstr(Vars.option, "previous") && (!geometry || !strlen(geometry)))
exit(printf("Monitor_Sqw: %s has no dimension specified. Aborting (radius, xwidth, yheight, zdepth, previous, geometry).\n", NAME_CURRENT_COMP));
Monitor_nD_Init(&DEFS, &Vars, xwidth, yheight, zdepth, xmin,xmax,ymin,ymax,zmin,zmax,offflag);
if (filename && strlen(filename) && strcmp(filename,"NULL") && strcmp(filename,"0"))
strncpy(Vars.Mon_File, filename, 128);
Vars.Flag_parallel=1;
detector.m = 0;
mean_vx=0; mean_vy=0; mean_vz=0; sum_p=0;
%}
TRACE
%{
double XY=0;
double t0 = 0;
double t1 = 0;
double pp;
int intersect = 0;
Vars.UserVariable3 = user3;
if (geometry && strlen(geometry) && strcmp(geometry,"NULL") && strcmp(geometry,"0"))
{
/* determine intersections with object */
intersect = off_intersect(&t0, &t1, NULL, NULL,
x,y,z, vx, vy, vz, 0, 0, 0, offdata );
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE) /* square xy */
{
PROP_Z0;
intersect = (x>=Vars.mxmin && x<=Vars.mxmax && y>=Vars.mymin && y<=Vars.mymax);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_DISK) /* disk xy */
{
PROP_Z0;
intersect = ((x*x + y*y) <= Vars.Sphere_Radius*Vars.Sphere_Radius);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) /* sphere */
{
intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius);
/* intersect = (intersect && t0 > 0); */
}
else if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)) /* cylinder */
{
intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius, Vars.Cylinder_Height);
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) /* box */
{
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, fabs(Vars.mxmax-Vars.mxmin), fabs(Vars.mymax-Vars.mymin), fabs(Vars.mzmax-Vars.mzmin));
}
else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_PREVIOUS) /* previous comp */
{ intersect = 1; }
if (intersect)
{
double rx,ry,rz,rvx,rvy,rvz,rt,rsx,rsy,rsz,rp;
double Ei, Ef;
if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND)
|| (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)
|| (geometry && strlen(geometry) && strcmp(geometry,"NULL") && strcmp(geometry,"0")) )
{
/* check if we have to remove the top/bottom with BANANA shape */
if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) && (intersect != 1)) {
double y0,y1;
/* propagate to intersection point as temporary variable to check top/bottom */
y0 = y+t0*vy;
y1 = y+t1*vy;
if (fabs(y0) >= Vars.Cylinder_Height/2*0.99) t0 = t1;
if (fabs(y1) >= Vars.Cylinder_Height/2*0.99) t1 = t0;
}
if (t0 < 0 && t1 > 0)
t0 = t; /* neutron was already inside ! */
if (t1 < 0 && t0 > 0) /* neutron exit before entering !! */
t1 = t;
/* t0 is now time of incoming intersection with the detection area */
if ((Vars.Flag_Shape < 0) && (t1 > 0))
PROP_DT(t1); /* t1 outgoing beam */
else
PROP_DT(t0); /* t0 incoming beam */
/* Final test if we are on lid / bottom of banana */
if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) {
if (fabs(y) >= Vars.Cylinder_Height/2*0.99) ABSORB;
}
}
SCATTER;
Ef = VS2E*(vx*vx+vy*vy+vz*vz);
/* get incoming beam velocity in 'initial' coordinate frame */
RESTORE_NEUTRON(INDEX_CURRENT_COMP+index,
rx,ry,rz,rvx,rvy,rvz,rt,rsx,rsy,rsz,rp);
mean_vx += rvx*rp; mean_vy += rvy*rp; mean_vz += rvz*rp;
sum_p += rp;
/* compute mean incoming energy and mean beam direction */
rvx = mean_vx/sum_p; rvy = mean_vy/sum_p; rvz = mean_vz/sum_p;
Ei = VS2E*(rvx*rvx+rvy*rvy+rvz*rvz);
Vars.UserVariable1=V2K*sqrt( (vx-rvx)*(vx-rvx)
+(vy-rvy)*(vy-rvy)
+(vz-rvz)*(vz-rvz) ); // Q = |Kf - Ki| with left/right sign
Vars.UserVariable1 *= (x >= 0 ? 1 : -1);
Vars.UserVariable2 = Ef-Ei; // E = Ef-Ei
/* send current neutron state to Monitor_nD_Trace */
/* Vars.cp = p;
Vars.cx = x;
Vars.cvx = vx;
Vars.csx = sx;
Vars.cy = y;
Vars.cvy = vy;
Vars.csy = sy;
Vars.cz = z;
Vars.cvz = vz;
Vars.csz = sz;
Vars.ct = t; */
pp = Monitor_nD_Trace(&DEFS, &Vars, _particle);
SCATTER;
} /* end if intersection */
RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
%}
SAVE COPY Monitor_nD
FINALLY COPY Monitor_nD
MCDISPLAY COPY Monitor_nD
END
|