File: Incoherent.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (468 lines) | stat: -rw-r--r-- 19,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Incoherent
*
* %I
* Written by: Kim Lefmann and Kristian Nielsen
* Date: 15.4.98
* Origin: Risoe
* Modified by: Aziz Daoud-aladine, ISIS, 2007: Added option to handle a spherical sample shape
* Modified by: Peter Christiansen, Risoe: Added outgoing polarization: P' = 1/3*P-2/3P = -1/3P NB! As above multiple scattering is ignored .
* Modified by: Reynald Arnerin, ILL, 2008: Added option to handle a complex geometry (OFF files)
*
* Incoherent sample (such as Vanadium) sample, with quasielastic component OR or global energy transfer.
*
* %D
* A Double-cylinder shaped incoherent scatterer (like Vanadium)
*   with both elastic and quasielastic (Lorentzian) components.
* No multiple scattering (but approximation available). Absorption included.
* <b>Sample focusing:</b>
*   The area to scatter to is a disk of radius 'focus_r' situated at the target.
*   This target area may also be rectangular if specified focus_xw and focus_yh
*   or focus_aw and focus_ah, respectively in meters and degrees.
*   The target itself is either situated according to given coordinates (x,y,z),
*   or defined with the relative target_index of the component to focus
*   to (next is +1).
*   This target position will be set to its AT position. When targeting to
*   centered components, such as spheres or cylinders, define an Arm component
*   where to focus to.
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape
*   box/plate:       xwidth x yheight x zdepth (thickness=0)
*   hollow box/plate:xwidth x yheight x zdepth and thickness>0
*   cylinder:        radius x yheight (thickness=0)
*   hollow cylinder: radius x yheight and thickness>0
*   sphere:          radius (yheight=0 thickness=0)
*   hollow sphere:   radius and thickness>0 (yheight=0)
*   any shape:       geometry=OFF file
*
*   The complex geometry option handles any closed non-convex polyhedra.
*   It computes the intersection points of the neutron ray with the object
*   transparently, so that it can be used like a regular sample object.
*   It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
*   Such files may be generated from XYZ data using:
*     qhull < coordinates.xyz Qx Qv Tv o > geomview.off
*   or
*     powercrust coordinates.xyz
*   and viewed with geomview or java -jar jroff.jar (see below).
*   The default size of the object depends of the OFF file data, but its
*   bounding box may be resized using xwidth,yheight and zdepth.
*
* Example: Incoherent(radius=0.05,focus_r=0.035, pack=1, target_index=1)
*          Incoherent(geometry="socket.off",focus_r=0.035, pack=1, target_index=1)
*
* %P
* INPUT PARAMETERS:
* radius: [m]         Outer radius of sample in (x,z) plane 
* xwidth: [m]         Horiz. dimension of sample (bounding box if off file), as a width 
* yheight: [m]        Vert.  dimension of sample (bounding box if off file), as a height. A sphere shape is used when 0 and radius is set 
* zdepth: [m]         Depth of sample (bounding box if off file) 
* thickness: [m]      Thickness of hollow sample 
* focus_r: [m]        Radius of disk containing target. Use 0 for full space 
* target_index: [1]   Relative index of component to focus at, e.g. next is +1 
*
* Optional parameters:
* pack: [1]           Packing factor 
* p_interact: [1]     MC Probability for scattering the ray; otherwise transmit 
* focus_xw: [m]       horiz. dimension of a rectangular area 
* focus_yh: [m]       vert.  dimension of a rectangular area 
* focus_aw: [deg]     horiz. angular dimension of a rectangular area 
* focus_ah: [deg]     vert.  angular dimension of a rectangular area 
* sigma_abs: [barns]  Absorption cross section pr. unit cell at 2200 m/s 
* sigma_inc: [barns]  Incoherent scattering cross section pr. unit cell 
* Vc: [AA^3]          Unit cell volume
* f_QE: [1]           Fraction of quasielastic scattering (rest is elastic) 
* gamma: [1]          Lorentzian width of quasielastic broadening (HWHM) 
* Etrans: [meV]       Global energy-transfer, for use in inelastic settings
* deltaE: [meV]       Width in energy around Etrans, for use in inelastic settings
* geometry: [str]     Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust 
* concentric: [1]     Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere) 
*
* order: [1]          Limit multiple scattering up to given order 0 means all (default), 1 means single, 2 means double, ... 
* target_x: []        
* target_y: [m]       position of target to focus at 
* target_z: []        
*
* %L
* <a href="http://www.ncnr.nist.gov/resources/n-lengths/">Cross sections for single elements</a>
* %L
* <a href="http://www.ncnr.nist.gov/resources/sldcalc.html>Cross sections for compounds</a>
* %L
* <a href="http://www.webelements.com/">Web Elements</a>
* %L
* <A HREF="http://neutron.risoe.dk/mcstas/components/tests/Incoherent/">Test
* results</A> (not up-to-date).
* %L
* The test/example instrument <a href="../examples/vanadium_example.instr">vanadium_example.instr</a>.
* %L
* The test/example instrument <a href="../examples/QENS_test.instr">QENS_test.instr</a>.
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a href="http://qhull.org">qhull</a>
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
*
* %E
*******************************************************************************/

DEFINE COMPONENT Incoherent

SETTING PARAMETERS (string geometry=0, radius=0, xwidth=0, yheight=0, zdepth=0,
thickness=0, nx=0, ny=1, nz=0,
target_x = 0, target_y = 0, target_z = 0, focus_r = 0,
focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, int target_index=0,
pack = 1, p_interact=1, f_QE=0, gamma=0, Etrans=0,deltaE=0,
sigma_abs=5.08, sigma_inc=5.08, Vc=13.827, concentric=0, order=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
%include "read_table-lib"
%include "interoff-lib"
struct StructVarsInc
{
double  sigma_a; /* Absorption cross section per atom (barns) */
    double  sigma_i; /* Incoherent scattering cross section per atom (barns) */
    double  rho;     /* Density of atoms (AA-3) */
    double  my_s;
    double  my_a_v;
    int     shape;       /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
    double  aw,ah;       /* rectangular angular dimensions */
    double  xw,yh;       /* rectangular metrical dimensions */
    double  tx,ty,tz;    /* target coords */
    };
%}

DECLARE
%{
  struct StructVarsInc VarsInc;
  off_struct offdata;
%}

INITIALIZE
%{
  VarsInc.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape  */
  if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
    #ifndef USE_OFF
    fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
    exit(-1);
    #else
    if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
      VarsInc.shape=3; thickness=0; concentric=0;
    }
    #endif
  }
  else if (xwidth && yheight && zdepth)  VarsInc.shape=1; /* box */
  else if (radius > 0 &&  yheight)       VarsInc.shape=0; /* cylinder */
  else if (radius > 0 && !yheight)       VarsInc.shape=2; /* sphere */

  if (VarsInc.shape < 0)
    exit(fprintf(stderr,"Incoherent: %s: sample has invalid dimensions.\n"
                        "ERROR       Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
  if (thickness) {
    if (radius && (radius < thickness || ( yheight && (yheight < 2*thickness)))) {
      fprintf(stderr,"Incoherent: %s: hollow sample thickness is larger than its volume (sphere/cylinder).\n"
                     "WARNING     Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
      thickness=0;
    }
    else if (!radius && (xwidth < 2*thickness || yheight < 2*thickness || zdepth < 2*thickness)) {
      fprintf(stderr,"Incoherent: %s: hollow sample thickness is larger than its volume (box).\n"
                     "WARNING     Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
      thickness=0;
    }
  }

  if (concentric && thickness<=0) {
    printf("Incoherent: %s:Can not use concentric mode\n"
           "WARNING     on non hollow shape. Ignoring.\n",
           NAME_CURRENT_COMP);
    concentric=0;
  }

  VarsInc.sigma_a= sigma_abs;
  VarsInc.sigma_i= sigma_inc;
  VarsInc.rho    = (pack/Vc);
  VarsInc.my_s   = (VarsInc.rho * 100 * VarsInc.sigma_i);
  VarsInc.my_a_v = (VarsInc.rho * 100 * VarsInc.sigma_a);

  /* now compute target coords if a component index is supplied */
  VarsInc.tx= VarsInc.ty=VarsInc.tz=0;
  if (!target_index && !target_x && !target_y && !target_z) target_index=1;
  if (target_index)
  {
    Coords ToTarget;
    ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
    ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
    coords_get(ToTarget, &VarsInc.tx, &VarsInc.ty, &VarsInc.tz);
  }
  else
  { VarsInc.tx = target_x; VarsInc.ty = target_y; VarsInc.tz = target_z; }

  if (!(VarsInc.tx || VarsInc.ty || VarsInc.tz)) {
    MPI_MASTER(
    printf("Incoherent: %s: The target is not defined. Using direct beam (Z-axis).\n",
      NAME_CURRENT_COMP);
    );
    VarsInc.tz=1;
  }

  /* different ways of setting rectangular area */
  VarsInc.aw  = VarsInc.ah = 0;
  if (focus_xw) { VarsInc.xw = focus_xw; }
  if (focus_yh) { VarsInc.yh = focus_yh; }
  if (focus_aw) { VarsInc.aw = DEG2RAD*focus_aw; }
  if (focus_ah) { VarsInc.ah = DEG2RAD*focus_ah; }

  MPI_MASTER(
  printf("Incoherent: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn]\n",
      NAME_CURRENT_COMP, Vc, VarsInc.sigma_a, VarsInc.sigma_i);
  );

%}

TRACE
%{
  double t0, t3;                /* Entry/exit time for outer surface */
  double t1, t2;                /* Entry/exit time for inner surface */
  double dt0, dt1, dt2, dt;     /* Flight times through sample */
  double v=0;                   /* Neutron velocity */
  double d_path;                /* Flight path length for non-scattered neutron */
  double l_i, l_o=0;            /* Flight path lenght in/out for scattered neutron */
  double my_a=0,my_t=0;         /* Velocity-dependent attenuation factor and total Xsec */
  double solid_angle=0;         /* Solid angle of target as seen from scattering point */
  double aim_x=0, aim_y=0, aim_z=1;   /* Position of target relative to scattering point */
  double v_i, v_f, E_i, E_f; /* initial and final energies and velocities */
  double dE;                 /* Energy transfer */
  int    intersect=0;
  int    flag_concentric=0;
  int    flag=0;
  double mc_trans, p_trans, mc_scatt, p_scatt, ws;
  double p_mult=1;

  #ifdef OPENACC
  #ifdef USE_OFF
  off_struct thread_offdata = offdata;
  #endif
  #else
  #define thread_offdata offdata
  #endif
  
  do { /* Main interaction loop. Ends with intersect=0 */

    /* Intersection neutron trajectory / sample (sample surface) */
    if (VarsInc.shape == 0)
      intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
    else if (VarsInc.shape == 1)
      intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
    else if (VarsInc.shape == 2)
      intersect = sphere_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius);
    #ifdef USE_OFF
    else if (VarsInc.shape == 3)
      intersect = off_intersect(&t0, &t3, NULL, NULL, x, y, z, vx, vy, vz, 0, 0, 0, thread_offdata );
    #endif
    
    if (intersect) {
      int flag_ishollow = 0;
      if (thickness>0) {
        if (VarsInc.shape==0 && cylinder_intersect(&t1,&t2, x,y,z,vx,vy,vz, radius-thickness,yheight-2*thickness))
          flag_ishollow=1;
        else if (VarsInc.shape==2 && sphere_intersect   (&t1,&t2, x,y,z,vx,vy,vz, radius-thickness))
          flag_ishollow=1;
        else if (VarsInc.shape==1 && box_intersect(&t1,&t2, x,y,z,vx,vy,vz, xwidth-2*thickness, yheight-2*thickness, zdepth-2*thickness))
          flag_ishollow = 1;
      }
      if (!flag_ishollow) t1 = t2 = t3; /* no empty space inside */

      dt0 = t1-t0;                /* Time in sample, ingoing */
      dt1 = t2-t1;                /* Time in hole */
      dt2 = t3-t2;                /* Time in sample, outgoing */

      if (t0 > 0) {  /* we are before the sample */
        PROP_DT(t0); /* propagates neutron to the entry of the sample */
      } else if (t1 > 0 && t1 > t0) { /* we are inside first part of the sample */
        /* no propagation, stay inside */
      } else if (t2 > 0 && t2 > t1) { /* we are in the hole */
        PROP_DT(t2); /* propagate to inner surface of 2nd part of sample */
      } else if (t3 > 0 && t3 > t2) { /* we are in the 2nd part of sample */
        /* no propagation, stay inside */
      }

      dt0=t1-(t0 > 0 ? t0 : 0); /* Time in first part of hollow/cylinder/box */
      dt1=t2-(t1 > 0 ? t1 : 0); /* Time in hole */
      dt2=t3-(t2 > 0 ? t2 : 0); /* Time in 2nd part of hollow cylinder */

      if (dt0 < 0) dt0 = 0;
      if (dt1 < 0) dt1 = 0;
      if (dt2 < 0) dt2 = 0;

      /* initialize concentric mode */
      if (concentric && !flag_concentric && t0 >= 0
       && VarsInc.shape==0 && thickness>0) {
        flag_concentric=1;
      }

      if (flag_concentric == 1) {
        dt1=dt2=0; /* force exit when reaching hole/2nd part */
      }

      if (!dt0 && !dt2) {
        intersect = 0; /* the sample was passed entirely */
        break;
      }

      p_mult = 1;
      if (!v) v = sqrt(vx*vx + vy*vy + vz*vz);
      if (v) my_a = VarsInc.my_a_v*(2200/v);
      else {
        printf("Incoherent: %s: ERROR: Null velocity\n",NAME_CURRENT_COMP);
        ABSORB; /* should never occur */
      }

      my_t = my_a + VarsInc.my_s;  /* total scattering Xsect (tmp var) */
      if (my_t <= 0) {
        printf("Incoherent: %s: ERROR: Null total cross section %g. Removing event.\n",
          NAME_CURRENT_COMP, my_t);
        ABSORB; /* should never occur */
      }
      d_path = v * (dt0 + dt2);   /* Length of full path through sample */
      /* Proba of scattering vs absorption (integrating along the whole trajectory) */
      ws = VarsInc.my_s/my_t;  /* (inc+coh)/(inc+coh+abs) */
      /* Proba of transmission along length d_path */
      p_trans = exp(-my_t*d_path);
      p_scatt = 1 - p_trans; /* portion of beam which scatters */
      flag = 0; /* flag used for propagation to exit point before ending */
      /* are we next to the exit ? probably no scattering (avoid rounding errors) */
      if (VarsInc.my_s*d_path <= 4e-7) {
        flag = 1;           /* No interaction before the exit */
      }
      /* force a given fraction of the beam to scatter */
      if (p_interact>0 && p_interact<=1) {
        /* we force a portion of the beam to interact */
        /* This is used to improve statistics on single scattering (and multiple) */
        if (!SCATTERED) mc_trans = 1-p_interact;
        else            mc_trans = 1-p_interact/(4*SCATTERED+1); /* reduce effect on multi scatt */
      } else {
        mc_trans = p_trans; /* 1 - p_scatt */
      }
      mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
      if (mc_scatt <= 0 || mc_scatt>1) flag=1;
      /* MC choice: Interaction or transmission ? */
      if (!flag && mc_scatt > 0 && (mc_scatt >= 1 || (rand01()) < mc_scatt)) { /* Interaction neutron/sample */
        p_mult *= ws; /* Update weight ; account for absorption and retain scattered fraction */
        if (!mc_scatt) ABSORB;
        /* we have chosen portion mc_scatt of beam instead of p_scatt, so we compensate */
        p_mult *= fabs(p_scatt/mc_scatt); /* lower than 1 */
      } else {
        flag = 1; /* Transmission : no interaction neutron/sample */
        if (!mc_trans) ABSORB;
        p_mult *= fabs(p_trans/mc_trans);  /* attenuate beam by portion which is scattered (and left along) */
      }

      if (flag) { /* propagate to exit of sample and finish */
        intersect = 0;
        p *= p_mult; /* apply absorption correction */
        PROP_DT(dt0+dt2);
        break; /* exit main multi scatt while loop */
      }
      if (my_t*d_path < 1e-6)
      /* For very weak scattering, use simple uniform sampling of scattering
         point to avoid rounding errors. */
        dt = rand0max(d_path); /* length */
      else
        dt = -log(1 - rand0max((1 - exp(-my_t*d_path)))) / my_t; /* length */
      l_i = dt;/* Penetration in sample: scattering+abs */
      dt /= v; /* Time from present position to scattering point */

      /* If t0 is in hole, propagate to next part of the hollow cylinder */
      if (dt1 > 0 && dt0 > 0 && dt > dt0) dt += dt1;

      PROP_DT(dt);                /* Point of scattering */

      if ((VarsInc.tx || VarsInc.ty || VarsInc.tz)) {
        aim_x = VarsInc.tx-x;       /* Vector pointing at target (anal./det.) */
        aim_y = VarsInc.ty-y;
        aim_z = VarsInc.tz-z;
      }
      if(VarsInc.aw && VarsInc.ah) {
        randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
          aim_x, aim_y, aim_z, VarsInc.aw, VarsInc.ah, ROT_A_CURRENT_COMP);
      } else if(VarsInc.xw && VarsInc.yh) {
        randvec_target_rect(&vx, &vy, &vz, &solid_angle,
          aim_x, aim_y, aim_z, VarsInc.xw, VarsInc.yh, ROT_A_CURRENT_COMP);
      } else {
        randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
      }
      NORM(vx, vy, vz);

      v_i = v;          /* Store initial velocity in case of quasielastic */
      E_i = VS2E*v_i*v_i;
      if (deltaE==0) {
	if (rand01()<f_QE)	/* Quasielastic contribution */
	  {
	    dE = gamma*tan(PI/2*randpm1());
	    E_f = E_i + dE;
	    if (E_f <= 0)
	      ABSORB;
	    v_f = SE2V*sqrt(E_f);
	    v = v_f;
	    /*          printf("vi: %g Ei: %g dE: %g Ef %g vf: %g v: %g \n",
			v_i,E_i,dE,E_f,v_f,v); */
	  }
      } else {
	E_f = E_i - Etrans + deltaE*randpm1(); // E_f=E0;
	v_f = SE2V*sqrt(E_f);
	v = v_f;
      }

      vx *= v;
      vy *= v;
      vz *= v;

      /* We do not consider scattering from 2nd part (outgoing) */
      p_mult *= solid_angle/4/PI;
      p *= p_mult;

      /* Polarisation part (1/3 NSF, 2/3 SF) */
      sx *= -1.0/3.0;
      sy *= -1.0/3.0;
      sz *= -1.0/3.0;

      SCATTER;

      /* test for a given multiple order */
      if (order && SCATTERED >= order) {
        intersect=0; /* reached required number of SCATTERing */
        break;       /* finish multiple scattering loop */
      }
    } /* end if intersect */
  } while (intersect); /* end do (intersect) (multiple scattering loop) */
%}

MCDISPLAY
%{
      if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {	/* OFF file */
            off_display(offdata);
      }
      else
        if (radius > 0 &&  yheight) {	/* cylinder */
          cylinder(0,0,0,radius,yheight,thickness, nx, ny, nz);
      }
      else if (xwidth && yheight) { 	/* box/rectangle */
          box(0,0,0,xwidth,yheight,zdepth,thickness, nx, ny, nz);
      }
      else if (radius > 0 && !yheight) {	/* sphere */
          sphere(0,0,0,radius);
      }
%}


END