1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Incoherent
*
* %I
* Written by: Kim Lefmann and Kristian Nielsen
* Date: 15.4.98
* Origin: Risoe
* Modified by: Aziz Daoud-aladine, ISIS, 2007: Added option to handle a spherical sample shape
* Modified by: Peter Christiansen, Risoe: Added outgoing polarization: P' = 1/3*P-2/3P = -1/3P NB! As above multiple scattering is ignored .
* Modified by: Reynald Arnerin, ILL, 2008: Added option to handle a complex geometry (OFF files)
*
* Incoherent sample (such as Vanadium) sample, with quasielastic component OR or global energy transfer.
*
* %D
* A Double-cylinder shaped incoherent scatterer (like Vanadium)
* with both elastic and quasielastic (Lorentzian) components.
* No multiple scattering (but approximation available). Absorption included.
* <b>Sample focusing:</b>
* The area to scatter to is a disk of radius 'focus_r' situated at the target.
* This target area may also be rectangular if specified focus_xw and focus_yh
* or focus_aw and focus_ah, respectively in meters and degrees.
* The target itself is either situated according to given coordinates (x,y,z),
* or defined with the relative target_index of the component to focus
* to (next is +1).
* This target position will be set to its AT position. When targeting to
* centered components, such as spheres or cylinders, define an Arm component
* where to focus to.
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape
* box/plate: xwidth x yheight x zdepth (thickness=0)
* hollow box/plate:xwidth x yheight x zdepth and thickness>0
* cylinder: radius x yheight (thickness=0)
* hollow cylinder: radius x yheight and thickness>0
* sphere: radius (yheight=0 thickness=0)
* hollow sphere: radius and thickness>0 (yheight=0)
* any shape: geometry=OFF file
*
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the neutron ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
* The default size of the object depends of the OFF file data, but its
* bounding box may be resized using xwidth,yheight and zdepth.
*
* Example: Incoherent(radius=0.05,focus_r=0.035, pack=1, target_index=1)
* Incoherent(geometry="socket.off",focus_r=0.035, pack=1, target_index=1)
*
* %P
* INPUT PARAMETERS:
* radius: [m] Outer radius of sample in (x,z) plane
* xwidth: [m] Horiz. dimension of sample (bounding box if off file), as a width
* yheight: [m] Vert. dimension of sample (bounding box if off file), as a height. A sphere shape is used when 0 and radius is set
* zdepth: [m] Depth of sample (bounding box if off file)
* thickness: [m] Thickness of hollow sample
* focus_r: [m] Radius of disk containing target. Use 0 for full space
* target_index: [1] Relative index of component to focus at, e.g. next is +1
*
* Optional parameters:
* pack: [1] Packing factor
* p_interact: [1] MC Probability for scattering the ray; otherwise transmit
* focus_xw: [m] horiz. dimension of a rectangular area
* focus_yh: [m] vert. dimension of a rectangular area
* focus_aw: [deg] horiz. angular dimension of a rectangular area
* focus_ah: [deg] vert. angular dimension of a rectangular area
* sigma_abs: [barns] Absorption cross section pr. unit cell at 2200 m/s
* sigma_inc: [barns] Incoherent scattering cross section pr. unit cell
* Vc: [AA^3] Unit cell volume
* f_QE: [1] Fraction of quasielastic scattering (rest is elastic)
* gamma: [1] Lorentzian width of quasielastic broadening (HWHM)
* Etrans: [meV] Global energy-transfer, for use in inelastic settings
* deltaE: [meV] Width in energy around Etrans, for use in inelastic settings
* geometry: [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust
* concentric: [1] Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere)
*
* order: [1] Limit multiple scattering up to given order 0 means all (default), 1 means single, 2 means double, ...
* target_x: []
* target_y: [m] position of target to focus at
* target_z: []
*
* %L
* <a href="http://www.ncnr.nist.gov/resources/n-lengths/">Cross sections for single elements</a>
* %L
* <a href="http://www.ncnr.nist.gov/resources/sldcalc.html>Cross sections for compounds</a>
* %L
* <a href="http://www.webelements.com/">Web Elements</a>
* %L
* <A HREF="http://neutron.risoe.dk/mcstas/components/tests/Incoherent/">Test
* results</A> (not up-to-date).
* %L
* The test/example instrument <a href="../examples/vanadium_example.instr">vanadium_example.instr</a>.
* %L
* The test/example instrument <a href="../examples/QENS_test.instr">QENS_test.instr</a>.
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a href="http://qhull.org">qhull</a>
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
*
* %E
*******************************************************************************/
DEFINE COMPONENT Incoherent
SETTING PARAMETERS (string geometry=0, radius=0, xwidth=0, yheight=0, zdepth=0,
thickness=0, nx=0, ny=1, nz=0,
target_x = 0, target_y = 0, target_z = 0, focus_r = 0,
focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, int target_index=0,
pack = 1, p_interact=1, f_QE=0, gamma=0, Etrans=0,deltaE=0,
sigma_abs=5.08, sigma_inc=5.08, Vc=13.827, concentric=0, order=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
%include "read_table-lib"
%include "interoff-lib"
struct StructVarsInc
{
double sigma_a; /* Absorption cross section per atom (barns) */
double sigma_i; /* Incoherent scattering cross section per atom (barns) */
double rho; /* Density of atoms (AA-3) */
double my_s;
double my_a_v;
int shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
double aw,ah; /* rectangular angular dimensions */
double xw,yh; /* rectangular metrical dimensions */
double tx,ty,tz; /* target coords */
};
%}
DECLARE
%{
struct StructVarsInc VarsInc;
off_struct offdata;
%}
INITIALIZE
%{
VarsInc.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
VarsInc.shape=3; thickness=0; concentric=0;
}
#endif
}
else if (xwidth && yheight && zdepth) VarsInc.shape=1; /* box */
else if (radius > 0 && yheight) VarsInc.shape=0; /* cylinder */
else if (radius > 0 && !yheight) VarsInc.shape=2; /* sphere */
if (VarsInc.shape < 0)
exit(fprintf(stderr,"Incoherent: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
if (thickness) {
if (radius && (radius < thickness || ( yheight && (yheight < 2*thickness)))) {
fprintf(stderr,"Incoherent: %s: hollow sample thickness is larger than its volume (sphere/cylinder).\n"
"WARNING Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
thickness=0;
}
else if (!radius && (xwidth < 2*thickness || yheight < 2*thickness || zdepth < 2*thickness)) {
fprintf(stderr,"Incoherent: %s: hollow sample thickness is larger than its volume (box).\n"
"WARNING Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
thickness=0;
}
}
if (concentric && thickness<=0) {
printf("Incoherent: %s:Can not use concentric mode\n"
"WARNING on non hollow shape. Ignoring.\n",
NAME_CURRENT_COMP);
concentric=0;
}
VarsInc.sigma_a= sigma_abs;
VarsInc.sigma_i= sigma_inc;
VarsInc.rho = (pack/Vc);
VarsInc.my_s = (VarsInc.rho * 100 * VarsInc.sigma_i);
VarsInc.my_a_v = (VarsInc.rho * 100 * VarsInc.sigma_a);
/* now compute target coords if a component index is supplied */
VarsInc.tx= VarsInc.ty=VarsInc.tz=0;
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &VarsInc.tx, &VarsInc.ty, &VarsInc.tz);
}
else
{ VarsInc.tx = target_x; VarsInc.ty = target_y; VarsInc.tz = target_z; }
if (!(VarsInc.tx || VarsInc.ty || VarsInc.tz)) {
MPI_MASTER(
printf("Incoherent: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
);
VarsInc.tz=1;
}
/* different ways of setting rectangular area */
VarsInc.aw = VarsInc.ah = 0;
if (focus_xw) { VarsInc.xw = focus_xw; }
if (focus_yh) { VarsInc.yh = focus_yh; }
if (focus_aw) { VarsInc.aw = DEG2RAD*focus_aw; }
if (focus_ah) { VarsInc.ah = DEG2RAD*focus_ah; }
MPI_MASTER(
printf("Incoherent: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn]\n",
NAME_CURRENT_COMP, Vc, VarsInc.sigma_a, VarsInc.sigma_i);
);
%}
TRACE
%{
double t0, t3; /* Entry/exit time for outer surface */
double t1, t2; /* Entry/exit time for inner surface */
double dt0, dt1, dt2, dt; /* Flight times through sample */
double v=0; /* Neutron velocity */
double d_path; /* Flight path length for non-scattered neutron */
double l_i, l_o=0; /* Flight path lenght in/out for scattered neutron */
double my_a=0,my_t=0; /* Velocity-dependent attenuation factor and total Xsec */
double solid_angle=0; /* Solid angle of target as seen from scattering point */
double aim_x=0, aim_y=0, aim_z=1; /* Position of target relative to scattering point */
double v_i, v_f, E_i, E_f; /* initial and final energies and velocities */
double dE; /* Energy transfer */
int intersect=0;
int flag_concentric=0;
int flag=0;
double mc_trans, p_trans, mc_scatt, p_scatt, ws;
double p_mult=1;
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
do { /* Main interaction loop. Ends with intersect=0 */
/* Intersection neutron trajectory / sample (sample surface) */
if (VarsInc.shape == 0)
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
else if (VarsInc.shape == 1)
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else if (VarsInc.shape == 2)
intersect = sphere_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius);
#ifdef USE_OFF
else if (VarsInc.shape == 3)
intersect = off_intersect(&t0, &t3, NULL, NULL, x, y, z, vx, vy, vz, 0, 0, 0, thread_offdata );
#endif
if (intersect) {
int flag_ishollow = 0;
if (thickness>0) {
if (VarsInc.shape==0 && cylinder_intersect(&t1,&t2, x,y,z,vx,vy,vz, radius-thickness,yheight-2*thickness))
flag_ishollow=1;
else if (VarsInc.shape==2 && sphere_intersect (&t1,&t2, x,y,z,vx,vy,vz, radius-thickness))
flag_ishollow=1;
else if (VarsInc.shape==1 && box_intersect(&t1,&t2, x,y,z,vx,vy,vz, xwidth-2*thickness, yheight-2*thickness, zdepth-2*thickness))
flag_ishollow = 1;
}
if (!flag_ishollow) t1 = t2 = t3; /* no empty space inside */
dt0 = t1-t0; /* Time in sample, ingoing */
dt1 = t2-t1; /* Time in hole */
dt2 = t3-t2; /* Time in sample, outgoing */
if (t0 > 0) { /* we are before the sample */
PROP_DT(t0); /* propagates neutron to the entry of the sample */
} else if (t1 > 0 && t1 > t0) { /* we are inside first part of the sample */
/* no propagation, stay inside */
} else if (t2 > 0 && t2 > t1) { /* we are in the hole */
PROP_DT(t2); /* propagate to inner surface of 2nd part of sample */
} else if (t3 > 0 && t3 > t2) { /* we are in the 2nd part of sample */
/* no propagation, stay inside */
}
dt0=t1-(t0 > 0 ? t0 : 0); /* Time in first part of hollow/cylinder/box */
dt1=t2-(t1 > 0 ? t1 : 0); /* Time in hole */
dt2=t3-(t2 > 0 ? t2 : 0); /* Time in 2nd part of hollow cylinder */
if (dt0 < 0) dt0 = 0;
if (dt1 < 0) dt1 = 0;
if (dt2 < 0) dt2 = 0;
/* initialize concentric mode */
if (concentric && !flag_concentric && t0 >= 0
&& VarsInc.shape==0 && thickness>0) {
flag_concentric=1;
}
if (flag_concentric == 1) {
dt1=dt2=0; /* force exit when reaching hole/2nd part */
}
if (!dt0 && !dt2) {
intersect = 0; /* the sample was passed entirely */
break;
}
p_mult = 1;
if (!v) v = sqrt(vx*vx + vy*vy + vz*vz);
if (v) my_a = VarsInc.my_a_v*(2200/v);
else {
printf("Incoherent: %s: ERROR: Null velocity\n",NAME_CURRENT_COMP);
ABSORB; /* should never occur */
}
my_t = my_a + VarsInc.my_s; /* total scattering Xsect (tmp var) */
if (my_t <= 0) {
printf("Incoherent: %s: ERROR: Null total cross section %g. Removing event.\n",
NAME_CURRENT_COMP, my_t);
ABSORB; /* should never occur */
}
d_path = v * (dt0 + dt2); /* Length of full path through sample */
/* Proba of scattering vs absorption (integrating along the whole trajectory) */
ws = VarsInc.my_s/my_t; /* (inc+coh)/(inc+coh+abs) */
/* Proba of transmission along length d_path */
p_trans = exp(-my_t*d_path);
p_scatt = 1 - p_trans; /* portion of beam which scatters */
flag = 0; /* flag used for propagation to exit point before ending */
/* are we next to the exit ? probably no scattering (avoid rounding errors) */
if (VarsInc.my_s*d_path <= 4e-7) {
flag = 1; /* No interaction before the exit */
}
/* force a given fraction of the beam to scatter */
if (p_interact>0 && p_interact<=1) {
/* we force a portion of the beam to interact */
/* This is used to improve statistics on single scattering (and multiple) */
if (!SCATTERED) mc_trans = 1-p_interact;
else mc_trans = 1-p_interact/(4*SCATTERED+1); /* reduce effect on multi scatt */
} else {
mc_trans = p_trans; /* 1 - p_scatt */
}
mc_scatt = 1 - mc_trans; /* portion of beam to scatter (or force to) */
if (mc_scatt <= 0 || mc_scatt>1) flag=1;
/* MC choice: Interaction or transmission ? */
if (!flag && mc_scatt > 0 && (mc_scatt >= 1 || (rand01()) < mc_scatt)) { /* Interaction neutron/sample */
p_mult *= ws; /* Update weight ; account for absorption and retain scattered fraction */
if (!mc_scatt) ABSORB;
/* we have chosen portion mc_scatt of beam instead of p_scatt, so we compensate */
p_mult *= fabs(p_scatt/mc_scatt); /* lower than 1 */
} else {
flag = 1; /* Transmission : no interaction neutron/sample */
if (!mc_trans) ABSORB;
p_mult *= fabs(p_trans/mc_trans); /* attenuate beam by portion which is scattered (and left along) */
}
if (flag) { /* propagate to exit of sample and finish */
intersect = 0;
p *= p_mult; /* apply absorption correction */
PROP_DT(dt0+dt2);
break; /* exit main multi scatt while loop */
}
if (my_t*d_path < 1e-6)
/* For very weak scattering, use simple uniform sampling of scattering
point to avoid rounding errors. */
dt = rand0max(d_path); /* length */
else
dt = -log(1 - rand0max((1 - exp(-my_t*d_path)))) / my_t; /* length */
l_i = dt;/* Penetration in sample: scattering+abs */
dt /= v; /* Time from present position to scattering point */
/* If t0 is in hole, propagate to next part of the hollow cylinder */
if (dt1 > 0 && dt0 > 0 && dt > dt0) dt += dt1;
PROP_DT(dt); /* Point of scattering */
if ((VarsInc.tx || VarsInc.ty || VarsInc.tz)) {
aim_x = VarsInc.tx-x; /* Vector pointing at target (anal./det.) */
aim_y = VarsInc.ty-y;
aim_z = VarsInc.tz-z;
}
if(VarsInc.aw && VarsInc.ah) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, VarsInc.aw, VarsInc.ah, ROT_A_CURRENT_COMP);
} else if(VarsInc.xw && VarsInc.yh) {
randvec_target_rect(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, VarsInc.xw, VarsInc.yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(vx, vy, vz);
v_i = v; /* Store initial velocity in case of quasielastic */
E_i = VS2E*v_i*v_i;
if (deltaE==0) {
if (rand01()<f_QE) /* Quasielastic contribution */
{
dE = gamma*tan(PI/2*randpm1());
E_f = E_i + dE;
if (E_f <= 0)
ABSORB;
v_f = SE2V*sqrt(E_f);
v = v_f;
/* printf("vi: %g Ei: %g dE: %g Ef %g vf: %g v: %g \n",
v_i,E_i,dE,E_f,v_f,v); */
}
} else {
E_f = E_i - Etrans + deltaE*randpm1(); // E_f=E0;
v_f = SE2V*sqrt(E_f);
v = v_f;
}
vx *= v;
vy *= v;
vz *= v;
/* We do not consider scattering from 2nd part (outgoing) */
p_mult *= solid_angle/4/PI;
p *= p_mult;
/* Polarisation part (1/3 NSF, 2/3 SF) */
sx *= -1.0/3.0;
sy *= -1.0/3.0;
sz *= -1.0/3.0;
SCATTER;
/* test for a given multiple order */
if (order && SCATTERED >= order) {
intersect=0; /* reached required number of SCATTERing */
break; /* finish multiple scattering loop */
}
} /* end if intersect */
} while (intersect); /* end do (intersect) (multiple scattering loop) */
%}
MCDISPLAY
%{
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) { /* OFF file */
off_display(offdata);
}
else
if (radius > 0 && yheight) { /* cylinder */
cylinder(0,0,0,radius,yheight,thickness, nx, ny, nz);
}
else if (xwidth && yheight) { /* box/rectangle */
box(0,0,0,xwidth,yheight,zdepth,thickness, nx, ny, nz);
}
else if (radius > 0 && !yheight) { /* sphere */
sphere(0,0,0,radius);
}
%}
END
|