File: Powder1.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (215 lines) | stat: -rw-r--r-- 6,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright 1997-2002, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Powder1
*
* %I
* Written by: E.M.Lauridsen, N.B.Christensen, A.B.Abrahamsen
* Date: 4.2.98
* Origin: Risoe
*
* General powder sample with a single scattering vector.
*
* %D
* General powder sample with a single scattering vector. No multiple ,
* scattering, no incoherent scattering, no secondary extinction.
* The shape of the sample may be a cylinder of given radius or a box with
* dimensions xwidth, yheight, zdepth.
* The efficient is highly improved when restricting the vertical scattering
* range on the Debye-Scherrer cone (with 'd_phi').
* You may use PowderN to use N scattering lines defined in a file.
*
* Example: Powder1(radius=0.015,yheight=0.05,q =1.8049,d_phi=0.07,pack=1,
*       j=6,DW=1,F2=56.8,Vc=85.0054,sigma_abs=0.463)
*
* %P
*
* INPUT PARAMETERS
*
* d_phi: [deg,0-180]  Angle corresponding to the vertical angular range to focus to, e.g. detector height. 0 for no focusing 
* radius: [m]         Radius of sample in (x,z) plane 
* yheight: [m]        Height of sample y direction 
* pack: [1]           Packing factor 
* Vc: [AA^3]     Volume of unit cell 
* sigma_abs: [barns]  Absorption cross section per unit cell at 2200 m/s 
*
* q:       Scattering vector of reflection [AA^-1]
* d: [AA]             d-spacing for sample, overrides 'q' 
* j: [1]              Multiplicity of reflection 
* F2: [barns]         Structure factor of reflection 
* DW: [1]             Debye-Waller factor of reflection 
*
* Optional parameters:
* xwidth: [m]         horiz. dimension of sample, as a width 
* zdepth: [m]         depth of box sample 
*
* Variables calculated in the component:
* my_s: Attenuation factor due to scattering [m^-1]
* my_a: Attenuation factor due to absorbtion [m^-1]
*
* %L
* <A HREF="http://neutron.risoe.dk/mcstas/components/tests/powder/">
* Test results</A> (not up-to-date).
* %L
* See also: Powder1, Powder2 and PowderN
*
* %E
*******************************************************************************/

DEFINE COMPONENT Powder1



SETTING PARAMETERS (radius=0.01, yheight=0.05, xwidth=0, zdepth=0,
q= 1.8049, d=0, d_phi= 0,
pack= 1, j= 6, DW= 1, F2= 56.8, Vc= 85.0054, sigma_abs= 0.463)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

DECLARE
%{
double my_s_v2;
double my_a_v;
double q_v;
char isrect;
%}

INITIALIZE
%{
isrect=0;

if (yheight) yheight=yheight;
  if (!radius || !yheight) {
    if (!xwidth || !yheight || !zdepth) exit(fprintf(stderr,"Powder1: %s: sample has no volume (zero dimensions)\n", NAME_CURRENT_COMP));
    else isrect=1; }

  my_a_v = pack*sigma_abs/Vc*2200*100;        /* Is not yet divided by v */
  my_s_v2 = 4*PI*PI*PI*pack*j*F2*DW/(Vc*Vc*V2K*V2K*q)*100;
  /* Is not yet divided by v^2. 100: convert from barns to fm^2 */
  /* Squires [3.103] */
  if (d) q=2*PI/d;
  q_v = q*K2V;
%}
TRACE
%{
  double t0, t1, v, l_full, l, l_1, dt, dphi_in,d_phi0, theta, my_s;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
  char   intersect=0;

  dphi_in = d_phi;
  if (isrect)
    intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
  else
    intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight);
  if(intersect)
  {
    if(t0 < 0)
      ABSORB;
    /* Neutron enters at t=t0. */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t1 - t0);        /* Length of full path through sample */
    dt = rand01()*(t1 - t0);       /* Time of scattering */
    PROP_DT(dt+t0);                /* Point of scattering */
    l = v*dt;                      /* Penetration in sample */

    /* choose line theta */
    arg = q_v/(2.0*v);
    if(arg > 1)
      ABSORB;                   /* No bragg scattering possible*/
    theta = asin(arg);          /* Bragg scattering law */

/* Choose point on Debye-Scherrer cone */
      if (dphi_in)
      { /* relate height of detector to the height on DS cone */
        arg = sin(dphi_in*DEG2RAD/2)/sin(2*theta);
        if (arg < -1 || arg > 1) dphi_in = 0;
        else dphi_in = 2*asin(arg);
      }
      if (dphi_in) {
        dphi_in = fabs(dphi_in);
        d_phi0= 2*rand01()*dphi_in;
        if (d_phi0 > dphi_in) arg = 1; else arg = 0;
        if (arg) {
          d_phi0=PI+(d_phi0-1.5*dphi_in);
        } else {
          d_phi0=d_phi0-0.5*dphi_in;
        }
        p *= dphi_in/PI;
      }
      else
        d_phi0 = PI*randpm1();

    /* now find a nearly vertical rotation axis:
      *  (v along Z) x (X axis) -> nearly Y axis
      */
    vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, 1,0,0);

    /* handle case where v and aim are parallel */
    if (!tmp_vx && !tmp_vy && !tmp_vz) { tmp_vx=tmp_vz=0; tmp_vy=1; }

    /* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */
    rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*theta, tmp_vx,tmp_vy,tmp_vz);

    /* tmp_v = rotate v_out by d_phi0 around 'v' (Debye-Scherrer cone) */
    rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, d_phi0, vx, vy, vz);
    vx = tmp_vx;
    vy = tmp_vy;
    vz = tmp_vz;

    arg=0;
    if (isrect && !box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth)) arg=1;
    else if(!isrect && !cylinder_intersect(&t0, &t1, x, y, z,
                          vx, vy, vz, radius, yheight)) arg=1;

    if (arg) {
      /* Strange error: did not hit cylinder */
      fprintf(stderr, "PowderN: FATAL ERROR: Did not hit sample from inside.\n");
      ABSORB;
    }
    l_1 = v*t1; /* go to exit */

    my_s = my_s_v2/(v*v);
    p *= l_full*my_s*exp(-(my_a_v/v+my_s)*(l+l_1));
    SCATTER;
  }
%}

MCDISPLAY
%{
  
  if (!isrect) {
    circle("xz", 0,  yheight/2.0, 0, radius);
    circle("xz", 0, -yheight/2.0, 0, radius);
    line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
    line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
    line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
    line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
  } else {
    double xmin = -0.5*xwidth;
    double xmax =  0.5*xwidth;
    double ymin = -0.5*yheight;
    double ymax =  0.5*yheight;
    double zmin = -0.5*zdepth;
    double zmax =  0.5*zdepth;
    multiline(5, xmin, ymin, zmin,
                 xmax, ymin, zmin,
                 xmax, ymax, zmin,
                 xmin, ymax, zmin,
                 xmin, ymin, zmin);
    multiline(5, xmin, ymin, zmax,
                 xmax, ymin, zmax,
                 xmax, ymax, zmax,
                 xmin, ymax, zmax,
                 xmin, ymin, zmax);
    line(xmin, ymin, zmin, xmin, ymin, zmax);
    line(xmax, ymin, zmin, xmax, ymin, zmax);
    line(xmin, ymax, zmin, xmin, ymax, zmax);
    line(xmax, ymax, zmin, xmax, ymax, zmax);
  }
%}
END