1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
|
/*****************************************************************************
* McStas, neutron ray-tracing package
* Copyright (C) 1997-2008 Risoe National Laboratory, Roskilde, Denmark
*
* Component: PowderN
*
* %I
* Written by: P. Willendrup, L. Chapon, K. Lefmann, A.B.Abrahamsen, N.B.Christensen, E.M.Lauridsen.
* Date: 4.2.98
* Origin: McStas release
* Modified by: KL, KN 20.03.98 (rewrite)
* Modified by: KL, 28.09.01 (two lines)
* Modified by: KL, 22.05.03 (background)
* Modified by: KL, PW 01.05.05 (N lines)
* Modified by: PW, LC 04.10.05 (Merge with Chapon Powder_multi)
* Modified by: PW, KL 05.06.07 (Concentricity)
* Modified by: EF, 17.10.08 (added any shape sample geometry)
* Modified by: MB, 25.07.18 (fixed indexing bug in calc_xsect)
* Modified by: Jan Saroun(JS) '17(added target_index, d_omega, tth_sign)
* Modified by: EF, June 2023 (can now read CIF files)
*
* General powder sample (N lines, single scattering, incoherent scattering)
*
* %D
* General powder sample with
* many scattering vectors
* possibility for intrinsic line broadening
* incoherent elastic background ratio is specified by user
* No multiple scattering. No secondary extinction.
*
* Based on Powder1/Powder2/Single_crystal.
* Geometry is a powder filled cylinder, sphere, box or any shape from an OFF file.
* Incoherent scattering is only provided here to account for a background.
* The efficient is highly improved when restricting the vertical scattering
* range on the Debye-Scherrer cone (with 'd_phi' and 'focus_flip').
* The unit cell volume Vc may also be computed when giving the density,
* the atomic/molecular weight and the number of atoms per unit cell.
* A simple strain handling is available by mean of either a global Strain parameter,
* or a column with a strain value per Bragg reflection. The strain values are
* specified in ppm (1e-6).
* The Single_crystal component can also handle a powder mode, as well as an
* approximated texture.
*
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape.
* box/plate: xwidth x yheight x zdepth (thickness=0)
* hollow box/plate:xwidth x yheight x zdepth and thickness>0
* cylinder: radius x yheight (thickness=0)
* hollow cylinder: radius x yheight and thickness>0
* sphere: radius (yheight=0 thickness=0)
* hollow sphere: radius and thickness>0 (yheight=0)
* any shape: geometry=OFF_file
*
* The complex geometry option handles any closed non-convex polyhedra.
* It computes the intersection points of the neutron ray with the object
* transparently, so that it can be used like a regular sample object.
* It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
* Such files may be generated from XYZ data using:
* qhull < coordinates.xyz Qx Qv Tv o > geomview.off
* or
* powercrust coordinates.xyz
* and viewed with geomview or java -jar jroff.jar (see below).
* The default size of the object depends of the OFF file data, but its
* bounding box may be resized using xwidth,yheight and zdepth.
*
* If you use this component and produce valuable scientific results, please
* cite authors with references bellow (in <a href="#links">Links</a>).
*
* Example: PowderN(reflections = "c60.lau", d_phi = 15 , radius = 0.01,
* yheight = 0.05, Vc = 1076.89, sigma_abs = 0, delta_d_d=0, DW=1))
*
* <b>Powder definition file format</b>
* Powder structure is specified with an ascii data file 'reflections'.
* The powder data are free-text column based files.
* The reflection list should be ordered by decreasing d-spacing values.
* ... d ... F2
* Lines begining by '#' are read as comments (ignored) but they may contain
* the following keywords (in the header):
* #Vc <value of unit cell volume Vc [Angs^3]>
* #sigma_abs <value of Absorption cross section [barns]>
* #sigma_inc <value of Incoherent cross section [barns]>
* #Debye_Waller <value of Debye-Waller factor DW>
* #delta_d_d/d <value of delta_d_d/d width for all lines>
* These values are not read if entered as component parameters (Vc=...)
*
* The signification of the columns in the numerical block may be
* set using the 'format' parameter, by defining signification of the
* columns as a vector of indexes in the order
* format={j,d,F2,DW,delta_d_d/d,1/2d,q,F,Strain}
*
* Signification of the symbols is given below. Indices start at 1.
* Indices with zero means that the column are not present, so that:
* Crystallographica={ 4,5,7,0,0,0,0,0,0 }
* Fullprof ={ 4,0,8,0,0,5,0,0,0 }
* Lazy ={17,6,0,0,0,0,0,13,0}
*
* At last, the format may be overridden by direct definition of the
* column indexes in the file itself by using the following keywords
* in the header (e.g. '#column_j 4'):
* #column_j <index of the multiplicity 'j' column>
* #column_d <index of the d-spacing 'd' column [Angs]>
* #column_F2 <index of the squared str. factor '|F|^2' column [b]>
* #column_F <index of the structure factor norm '|F|' column>
* #column_DW <index of the Debye-Waller factor 'DW' column>
* #column_Dd <index of the relative line width delta_d_d/d broadening 'Dd' column>
* #column_inv2d <index of the 1/2d=sin(theta)/lambda 'inv2d' column>
* #column_q <index of the scattering wavevector 'q' column [Angs-1]>
* #column_strain <index of the strain line shift Delta/d [ppm]>
*
* Last, CIF, FullProf and ShelX files can be read, and converted to F2(hkl) lists
* if 'cif2hkl' is installed. The CIF2HKL env variable can be used to point to a
* proper executable, else the McCode, then the system installed versions are used.
*
* <b>Concentricity</b>
*
* PowderN assumes 'concentric' shape, i.e. can contain other components inside its
* optional inner hollow. Example, Sample in Al cryostat:
*
*
* COMPONENT Cryo = PowderN(reflections="Al.laz", radius = 0.01, thickness = 0.001,
* concentric = 1, p_interact=0.1)
* AT (0,0,0) RELATIVE Somewhere
*
* COMPONENT Sample = some_other_component(with geometry FULLY enclosed in the hollow)
* AT (0,0,0) RELATIVE Somewhere
*
* COMPONENT Cryo2 = COPY(Cryo)(concentric = 0)
* AT (0,0,0) RELATIVE Somewhere
*
*
* (The second instance of the cryostat component can also be written out completely
* using PowderN(...). In both cases, this second instance needs concentric = 0.)
* The concentric arrangment can not be used with OFF geometry specification.
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT pow = PowderN(...)
*
* %P
* INPUT PARAMETERS
* radius: [m] Outer radius of sample in (x,z) plane
* xwidth: [m] Horiz. dimension of sample, as a width
* yheight: [m] Height of sample y direction
* zdepth: [m] Depth of box sample
* thickness: [] Thickness of hollow sample. Negative value extends the hollow volume outside of the box/cylinder.
* reflections: [string] Input file for reflections (LAZ LAU CIF, FullProf, ShelX). Use only incoherent scattering if NULL or ""
* d_phi: [deg] Angle corresponding to the vertical angular range to focus to, e.g. detector height. 0 for no focusing.
* d_omega: [deg] Horizontal focus range (only for incoherent scattering), 0 for no focusing.
* tth_sign: [1] Sign of the scattering angle. If 0, the sign is chosen randomly (left and right). ONLY functional in combination with d_phi and ONLY applies to bragg lines.
* focus_flip: [1] Controls the sense of d_phi. If 0 d_phi is measured against the xz-plane. If !=0 d_phi is measured against zy-plane.
* pack: [1] Packing factor.
* delta_d_d: [0/1] Global relative delta_d_d/d broadening when the 'w' column is not available. Use 0 if ideal.
* Strain: [ppm] Global relative delta_d_d/d shift when the 'Strain' column is not available. Use 0 if ideal.
* format: [no quotes] Name of the format, or list of column indexes (see Description).
* p_inc: [1] Fraction of incoherently scattered neutron rays.
* p_transmit: [1] Fraction of transmitted (only attenuated) neutron rays.
* p_interact: [1] Fraction of events interacting coherently with sample.
* concentric: [1] Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere).
* geometry: [str] Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust.
* barns: [1] Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2 (barns=1 for laz, barns=0 for lau type files).
* sigma_abs: [barns] Absorption cross section per unit cell at 2200 m/s. Use a negative value to unactivate it.
* sigma_inc: [barns] Incoherent cross section per unit cell. Use a negative value to unactivate it.
* Vc: [AA^3] Volume of unit cell=nb atoms per cell/density of atoms.
* DW: [1] Global Debye-Waller factor when the 'DW' column is not available. Use 1 if included in F2
* weight: [g/mol] Atomic/molecular weight of material.
* density: [g/cm^3] Density of material. rho=density/weight/1e24*N_A.
* nb_atoms: [1] Number of sub-unit per unit cell, that is ratio of sigma for chemical formula to sigma per unit cell
* target_index: [1] Relative index of component to focus incoherent scattering at, e.g. next is +1
*
* CALCULATED PARAMETERS:
* line_info: [struct] internal structure containing many members/info
* line_info.type: interaction type of event 't'=Transmit, 'i'=Incoherent, 'c'=Coherent [char]
* line_info.dq: wavevector transfer of last coherent scattering event [Angs-1]
*
* %L
* "Validation of a realistic powder sample using data from DMC at PSI" Willendrup P, Filges U, Keller L, Farhi E, Lefmann K, Physica B-Cond Matt 385 (2006) 1032.
* %L
* See also: Powder1, Single_crystal
* %L
* See <a href="http://icsd.ill.fr">ICSD</a> Inorganic Crystal Structure Database
* %L
* <a href="http://www.ncnr.nist.gov/resources/n-lengths/">Cross sections for single elements</a>
* %L
* <a href="http://www.ncnr.nist.gov/resources/sldcalc.html>Cross sections for compounds</a>
* %L
* <a href="http://www.webelements.com/">Web Elements</a>
* %L
* <a href="http://www.ill.eu/sites/fullprof/index.html">Fullprof</a> powder refinement
* %L
* <a href="http://www.crystallographica.com/">Crystallographica</a> software (free license)
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a href="http://qhull.org">qhull</a>
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
*
* %E
*****************************************************************************/
DEFINE COMPONENT PowderN
SETTING PARAMETERS (string reflections="NULL", string geometry="NULL",
vector format={0, 0, 0, 0, 0, 0, 0, 0, 0},
radius=0, yheight=0, xwidth=0, zdepth=0, thickness=0,
pack=1, Vc=0, sigma_abs=0, sigma_inc=0, delta_d_d=0, p_inc=0.1, p_transmit=0.1,
DW=0, nb_atoms=1, d_omega=0, d_phi=0, tth_sign=0, p_interact=0.8,
concentric=0, density=0, weight=0, barns=1, Strain=0, focus_flip=0, int target_index=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
SHARE
%{
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef POWDERN_DECL
#define POWDERN_DECL
struct line_data
{
double F2; /* Value of structure factor */
double q; /* Qvector */
int j; /* Multiplicity */
double DWfactor; /* Debye-Waller factor */
double w; /* Intrinsic line width */
double Epsilon; /* Strain=delta_d_d/d shift in ppm */
};
struct line_info_struct
{
struct line_data *list; /* Reflection array */
int count; /* Number of reflections */
double Dd;
double DWfactor;
double V_0;
double rho;
double at_weight;
double at_nb;
double sigma_a;
double sigma_i;
char compname[256];
double flag_barns;
int shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
int column_order[9]; /* column signification */
int flag_warning;
double dq; /* wavevector transfer [Angs-1] */
double Epsilon; /* global strain in ppm */
double XsectionFactor;
double my_s_v2_sum;
double my_a_v;
double my_inc;
double lfree; // store mean free path for the last event;
double *w_v,*q_v, *my_s_v2;
double radius_i,xwidth_i,yheight_i,zdepth_i;
double v; /* last velocity (cached) */
double Nq;
int nb_reuses, nb_refl, nb_refl_count;
double v_min, v_max;
double xs_Nq[CHAR_BUF_LENGTH];
double xs_sum[CHAR_BUF_LENGTH];
double neutron_passed;
long xs_compute, xs_reuse, xs_calls;
};
off_struct offdata;
// PN_list_compare *****************************************************************
int PN_list_compare (void const *a, void const *b)
{
struct line_data const *pa = a;
struct line_data const *pb = b;
double s = pa->q - pb->q;
if (!s) return 0;
else return (s < 0 ? -1 : 1);
} /* PN_list_compare */
#ifndef CIF2HKL
#define CIF2HKL
// hkl_filename = cif2hkl(file, options)
// used to convert CIF/CFL/INS file into F2(hkl)
// the CIF2HKL env var can point to a cif2hkl executable
// else the McCode binary is attempted, then the system.
char *cif2hkl(char *infile, char *options) {
char cmd[1024];
int ret = 0;
int found = 0;
char *OUTFILE;
// get filename extension
char *ext = strrchr(infile, '.');
if(!ext || ext == infile) return infile;
else ext++;
// return input when no extension or not a CIF/FullProf/ShelX file
if ( strcasecmp(ext, "cif")
&& strcasecmp(ext, "pcr")
&& strcasecmp(ext, "cfl")
&& strcasecmp(ext, "shx")
&& strcasecmp(ext, "ins")
&& strcasecmp(ext, "res")) return infile;
OUTFILE = malloc(1024);
if (!OUTFILE) return infile;
strncpy(OUTFILE, tmpnam(NULL), 1024); // create an output temporary file name
// try in order the CIF2HKL env var, then the system cif2hkl, then the McCode one
if (!found && getenv("CIF2HKL")) {
snprintf(cmd, 1024, "%s -o %s %s %s",
getenv("CIF2HKL"),
OUTFILE, options, infile);
ret = system(cmd);
if (ret != -1 && ret != 127) found = 1;
}
if (!found) {
// try with cif2hkl command from the system PATH
snprintf(cmd, 1024, "%s -o %s %s %s",
"cif2hkl", OUTFILE, options, infile);
ret = system(cmd);
if (ret != -1 && ret != 127) found = 1;
}
if (!found) {
// As a last resort, attempt with cif2hkl from $MCSTAS/bin
snprintf(cmd, 1024, "%s%c%s%c%s -o %s %s %s",
getenv(FLAVOR_UPPER) ? getenv(FLAVOR_UPPER) : MCSTAS,
MC_PATHSEP_C, "bin", MC_PATHSEP_C, "cif2hkl",
OUTFILE, options, infile);
ret = system(cmd);
}
// ret = -1: child process could not be created
// ret = 127: shell could not be executed in the child process
if (ret == -1 || ret == 127) {
free(OUTFILE);
return(NULL);
}
// test if the result file has been created
FILE *file = fopen(OUTFILE,"r");
if (!file) {
free(OUTFILE);
return(NULL);
}
MPI_MASTER(
printf("%s: INFO: Converting %s into F2(HKL) list %s\n",
__FILE__, infile, OUTFILE);
printf ("%s\n",cmd);
);
fflush(NULL);
fclose(file);
return(OUTFILE);
} // cif2hkl
#endif
int read_line_data(char *SC_file, struct line_info_struct *info)
{
struct line_data *list = NULL;
int size = 0;
t_Table sTable; /* sample data table structure from SC_file */
int i=0;
int mult_count =0;
char flag=0;
double q_count=0, j_count=0, F2_count=0;
char **parsing;
int list_count=0;
char *filename=NULL;
if (!SC_file || !strlen(SC_file) || !strcmp(SC_file, "NULL")) {
MPI_MASTER(
printf("PowderN: %s: Using incoherent elastic scattering only.\n",
info->compname);
);
info->count = 0;
return(0);
}
filename = cif2hkl(SC_file, "--mode NUC");
long retval = Table_Read(&sTable, filename, 1); /* read 1st block data from SC_file into sTable*/
if (retval<0) {
fprintf(stderr,"PowderN: Could not open file %s - exiting!\n",SC_file);
exit(-1);
}
/* parsing of header */
parsing = Table_ParseHeader(sTable.header,
"Vc","V_0",
"sigma_abs","sigma_a ",
"sigma_inc","sigma_i ",
"column_j",
"column_d",
"column_F2",
"column_DW",
"column_Dd",
"column_inv2d", "column_1/2d", "column_sintheta/lambda",
"column_q", /* 14 */
"DW", "Debye_Waller",
"delta_d_d/d",
"column_F ",
"V_rho",
"density",
"weight",
"nb_atoms","multiplicity", /* 23 */
"column_ppm","column_strain",
NULL);
if (parsing) {
if (parsing[0] && !info->V_0) info->V_0 =atof(parsing[0]);
if (parsing[1] && !info->V_0) info->V_0 =atof(parsing[1]);
if (parsing[2] && !info->sigma_a) info->sigma_a=atof(parsing[2]);
if (parsing[3] && !info->sigma_a) info->sigma_a=atof(parsing[3]);
if (parsing[4] && !info->sigma_i) info->sigma_i=atof(parsing[4]);
if (parsing[5] && !info->sigma_i) info->sigma_i=atof(parsing[5]);
if (parsing[6]) info->column_order[0]=atoi(parsing[6]);
if (parsing[7]) info->column_order[1]=atoi(parsing[7]);
if (parsing[8]) info->column_order[2]=atoi(parsing[8]);
if (parsing[9]) info->column_order[3]=atoi(parsing[9]);
if (parsing[10]) info->column_order[4]=atoi(parsing[10]);
if (parsing[11]) info->column_order[5]=atoi(parsing[11]);
if (parsing[12]) info->column_order[5]=atoi(parsing[12]);
if (parsing[13]) info->column_order[5]=atoi(parsing[13]);
if (parsing[14]) info->column_order[6]=atoi(parsing[14]);
if (parsing[15] && info->DWfactor<=0) info->DWfactor=atof(parsing[15]);
if (parsing[16] && info->DWfactor<=0) info->DWfactor=atof(parsing[16]);
if (parsing[17] && info->Dd <0) info->Dd =atof(parsing[17]);
if (parsing[18]) info->column_order[7]=atoi(parsing[18]);
if (parsing[19] && !info->V_0) info->V_0 =1/atof(parsing[19]);
if (parsing[20] && !info->rho) info->rho =atof(parsing[20]);
if (parsing[21] && !info->at_weight) info->at_weight =atof(parsing[21]);
if (parsing[22] && info->at_nb <= 1) info->at_nb =atof(parsing[22]);
if (parsing[23] && info->at_nb <= 1) info->at_nb =atof(parsing[23]);
if (parsing[24]) info->column_order[8]=atoi(parsing[24]);
if (parsing[25]) info->column_order[8]=atoi(parsing[25]);
for (i=0; i<=25; i++) if (parsing[i]) free(parsing[i]);
free(parsing);
}
if (!sTable.rows)
exit(fprintf(stderr, "PowderN: %s: Error: The number of rows in %s "
"should be at least %d\n", info->compname, SC_file, 1));
else
size = sTable.rows;
MPI_MASTER(
Table_Info(sTable);
printf("PowderN: %s: Reading %d rows from %s\n",
info->compname, size, SC_file);
);
if (info->column_order[0] == 4 && info->flag_barns !=0)
MPI_MASTER(
printf("PowderN: %s: Powder file probably of type Crystallographica/Fullprof (lau)\n"
"WARNING: but F2 unit is set to barns=1 (barns). Intensity might be 100 times too high.\n",
info->compname);
);
if (info->column_order[0] == 17 && info->flag_barns == 0)
MPI_MASTER(
printf("PowderN: %s: Powder file probably of type Lazy Pulver (laz)\n"
"WARNING: but F2 unit is set to barns=0 (fm^2). Intensity might be 100 times too low.\n",
info->compname);
);
/* allocate line_data array */
list = (struct line_data*)malloc(size*sizeof(struct line_data));
for (i=0; i<size; i++)
{
/* printf("Reading in line %i\n",i);*/
double j=0, d=0, w=0, q=0, DWfactor=0, F2=0, Epsilon=0;
int index;
if (info->Dd >= 0) w = info->Dd;
if (info->DWfactor > 0) DWfactor = info->DWfactor;
if (info->Epsilon) Epsilon = info->Epsilon*1e-6;
/* get data from table using columns {j d F2 DW Dd inv2d q F} */
/* column indexes start at 1, thus need to substract 1 */
if (info->column_order[0] >0)
j = Table_Index(sTable, i, info->column_order[0]-1);
if (info->column_order[1] >0)
d = Table_Index(sTable, i, info->column_order[1]-1);
if (info->column_order[2] >0)
F2 = Table_Index(sTable, i, info->column_order[2]-1);
if (info->column_order[3] >0)
DWfactor = Table_Index(sTable, i, info->column_order[3]-1);
if (info->column_order[4] >0)
w = Table_Index(sTable, i, info->column_order[4]-1);
if (info->column_order[5] >0 && !(info->column_order[1] >0)) // Only use if d not read already
{ d = Table_Index(sTable, i, info->column_order[5]-1);
d = (d > 0? 1/d/2 : 0); }
if (info->column_order[6] >0 && !(info->column_order[1] >0)) // Only use if d not read already
{ q = Table_Index(sTable, i, info->column_order[6]-1);
d = (q > 0 ? 2*PI/q : 0); }
if (info->column_order[7] >0 && !F2)
{ F2 = Table_Index(sTable, i, info->column_order[7]-1); F2 *= F2; }
if (info->column_order[8] >0 && !Epsilon)
{ Epsilon = Table_Index(sTable, i, info->column_order[8]-1)*1e-6; }
/* assign and check values */
j = (j > 0 ? j : 0);
q = (d > 0 ? 2*PI/d : 0); /* this is q */
if (Epsilon && fabs(Epsilon) < 1e6) {
q -= Epsilon*q; /* dq/q = -delta_d_d/d = -Epsilon */
}
DWfactor = (DWfactor > 0 ? DWfactor : 1);
w = (w>0 ? w : 0); /* this is q and d relative spreading */
F2 = (F2 >= 0 ? F2 : 0);
if (j == 0 || q == 0) {
MPI_MASTER(
printf("PowderN: %s: line %i has invalid definition\n"
" (mult=0 or q=0 or d=0)\n", info->compname, i);
);
continue;
}
list[list_count].j = j;
list[list_count].q = q;
list[list_count].DWfactor = DWfactor;
list[list_count].w = w;
list[list_count].F2= F2;
list[list_count].Epsilon = Epsilon;
/* adjust multiplicity if j-column + multiple d-spacing lines */
/* if d = previous d, increase line duplication index */
if (!q_count) q_count = q;
if (!j_count) j_count = j;
if (!F2_count) F2_count = F2;
if (fabs(q_count-q) < 0.0001*fabs(q)
&& fabs(F2_count-F2) < 0.0001*fabs(F2) && j_count == j) {
mult_count++; flag=0; }
else flag=1;
if (i == size-1) flag=1;
/* else if d != previous d : just passed equivalent lines */
if (flag) {
if (i == size-1) list_count++;
/* if duplication index == previous multiplicity */
/* set back multiplicity of previous lines to 1 */
if ((mult_count && list_count>0)
&& (mult_count == list[list_count-1].j
|| ((list_count < size) && (i == size - 1)
&& (mult_count == list[list_count].j))) ) {
MPI_MASTER(
printf("PowderN: %s: Set multiplicity to 1 for lines [%i:%i]\n"
" (d-spacing %g is duplicated %i times)\n",
info->compname, list_count-mult_count, list_count-1, list[list_count-1].q, mult_count);
);
for (index=list_count-mult_count; index<list_count; list[index++].j = 1);
mult_count = 1;
q_count = q;
j_count = j;
F2_count = F2;
}
if (i == size-1) list_count--;
flag=0;
}
list_count++;
} /* end for */
Table_Free(&sTable);
/* sort the list with increasing q */
qsort(list, list_count, sizeof(struct line_data), PN_list_compare);
MPI_MASTER(
printf("PowderN: %s: Read %i reflections from file '%s'\n",
info->compname, list_count, SC_file);
);
// remove temporary F2(hkl) file when giving CFL/CIF/ShelX file
if (filename != SC_file)
unlink(filename);
info->list = list;
info->count = list_count;
return(list_count);
} /* read_line_data */
/* computes the number of possible reflections (return value), and the total xsection 'sum' */
/* this routine looks for a pre-computed value in the Nq and sum cache tables */
/* when found, the earch starts from the corresponding lower element in the table */
#pragma acc routine seq
int calc_xsect(double v, double *qv, double *my_sv2, int count, double *sum,
struct line_info_struct *line_info) {
int Nq = 0, line=0, line0=0;
*sum=0;
/* check if a line_info element has been recorded already - not on OpenACC */
#ifndef OPENACC
if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
Nq = line_info->xs_Nq[line];
*sum = line_info->xs_sum[line];
if (!Nq && *sum == 0) {
/* not yet set: we compute the sum up to the corresponding speed in the table cache */
double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
for(line0=0; line0<count; line0++) {
if (qv[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
*sum += my_sv2[line0];
if (Nq < line0+1) Nq=line0+1; /* determine maximum line index which can scatter */
} else break;
}
line_info->xs_Nq[line] = Nq;
line_info->xs_sum[line]= *sum;
line_info->xs_compute++;
} else line_info->xs_reuse++;
line0 = Nq;
}
line_info->xs_calls++;
#endif
for(line=line0; line<count; line++) {
if (qv[line] <= 2*v) { /* q < 2*kf: restrict structural range */
*sum += my_sv2[line];
if (Nq < line+1) Nq=line+1; /* determine maximum line index which can scatter */
} else break;
}
return(Nq);
} /* calc_xsect */
#endif /* !POWDERN_DECL */
%}
DECLARE
%{
struct line_info_struct line_info;
double *columns;
off_struct offdata;
double tgt_x;
double tgt_y;
double tgt_z;
%}
INITIALIZE
%{
/* We ought to clean up the columns variable as format is now a proper vector/array */
columns = format;
int i=0;
struct line_data *L;
line_info.Dd = delta_d_d;
line_info.DWfactor = DW;
line_info.V_0 = Vc;
line_info.rho = density;
line_info.at_weight= weight;
line_info.at_nb = nb_atoms;
line_info.sigma_a = sigma_abs;
line_info.sigma_i = sigma_inc;
line_info.flag_barns=barns;
line_info.shape = 0;
line_info.flag_warning=0;
line_info.Epsilon = Strain;
line_info.radius_i =line_info.xwidth_i=line_info.yheight_i=line_info.zdepth_i=0;
line_info.v = 0;
line_info.Nq = 0;
line_info.v_min = FLT_MAX; line_info.v_max = 0;
line_info.neutron_passed=0;
line_info.nb_reuses = line_info.nb_refl = line_info.nb_refl_count = 0;
line_info.xs_compute= line_info.xs_reuse= line_info.xs_calls =0;
for (i=0; i< 9; i++) {
line_info.column_order[i] = (int)columns[i];
}
strncpy(line_info.compname, NAME_CURRENT_COMP, 256);
line_info.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape */
if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
#ifndef USE_OFF
fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
exit(-1);
#else
if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
line_info.shape=3; thickness=0; concentric=0;
}
#endif
}
else
if (xwidth && yheight && zdepth) line_info.shape=1; /* box */
else if (radius > 0 && yheight) line_info.shape=0; /* cylinder */
else if (radius > 0 && !yheight) line_info.shape=2; /* sphere */
if (line_info.shape < 0)
exit(fprintf(stderr,"PowderN: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
if (thickness) {
if (radius && (radius < fabs(thickness))) {
MPI_MASTER(
printf("PowderN: %s: hollow sample thickness is larger than its volume (sphere/cylinder).\n"
"WARNING Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
);
thickness=0;
}
else if (!radius && (xwidth < 2*fabs(thickness) || yheight < 2*fabs(thickness) || zdepth < 2*fabs(thickness))) {
MPI_MASTER(
printf("PowderN: %s: hollow sample thickness is larger than its volume (box).\n"
"WARNING Please check parameter values.\n", NAME_CURRENT_COMP);
);
}
}
if (concentric && thickness==0) {
MPI_MASTER(
printf("PowderN: %s:Can not use concentric mode\n"
"WARNING on non hollow shape. Ignoring.\n",
NAME_CURRENT_COMP);
);
concentric=0;
}
if (thickness>0) {
if (radius>thickness) {
line_info.radius_i=radius-thickness;
} else {
if (xwidth>2*thickness) line_info.xwidth_i =xwidth -2*thickness;
if (yheight>2*thickness) line_info.yheight_i=yheight-2*thickness;
if (zdepth>2*thickness) line_info.zdepth_i =zdepth -2*thickness;
}
} else if (thickness<0) {
thickness = fabs(thickness);
if (radius) {
line_info.radius_i=radius;
radius=line_info.radius_i+thickness;
} else {
line_info.xwidth_i =xwidth;
line_info.yheight_i=yheight;
line_info.zdepth_i =zdepth;
xwidth =xwidth +2*thickness;
yheight =yheight+2*thickness;
zdepth =zdepth +2*thickness;
}
}
if (!line_info.yheight_i) {
line_info.yheight_i = yheight;
}
if (!p_interact){
fprintf(stderr,"WARNING(%s): p_interact=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
p_interact=1e-2;
}
if (!p_inc){
fprintf(stderr,"WARNING(%s): p_inc=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
p_inc =1e-2;
}
if (!p_transmit){
fprintf(stderr,"WARNING(%s): p_transmit=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
p_transmit=1e-2;
}
double p_sum=p_interact+p_inc+p_transmit;
p_interact = p_interact / p_sum;
p_inc = p_inc / p_sum;
p_transmit = p_transmit / p_sum;
if (concentric) {
MPI_MASTER(
printf("PowderN: %s: Concentric mode - remember to include the 'opposite' copy of this component !\n"
"WARNING The equivalent, 'opposite' comp should have concentric=0\n", NAME_CURRENT_COMP);
);
if (p_transmit < 0.1) {
MPI_MASTER(
printf("PowderN: %s: Concentric mode and p_transmit<0.1 !\n"
"WARNING Consider increasing p_transmit as few particles will reach the inner hollow.\n", NAME_CURRENT_COMP);
);
}
}
if (reflections && strlen(reflections) && strcmp(reflections, "NULL") && strcmp(reflections, "0")) {
i = read_line_data(reflections, &line_info);
if (i == 0)
exit(fprintf(stderr,"PowderN: %s: reflection file %s is not valid.\n"
"ERROR Please check file format (laz or lau).\n", NAME_CURRENT_COMP, reflections));
}
/* compute the scattering unit density from material weight and density */
/* the weight of the scattering element is the chemical formula molecular weight
* times the nb of chemical formulae in the scattering element (nb_atoms) */
if (!line_info.V_0 && line_info.at_nb > 0
&& line_info.at_weight > 0 && line_info.rho > 0) {
/* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
/* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
line_info.V_0 = line_info.at_nb
/(line_info.rho/line_info.at_weight/1e24*6.02214199e23);
}
/* the scattering unit cross sections are the chemical formula onces
* times the nb of chemical formulae in the scattering element */
if (line_info.at_nb > 0) {
line_info.sigma_a *= line_info.at_nb; line_info.sigma_i *= line_info.at_nb;
}
if (line_info.sigma_a<0) line_info.sigma_a=0;
if (line_info.sigma_i<0) line_info.sigma_i=0;
if (line_info.V_0 <= 0)
MPI_MASTER(
printf("PowderN: %s: density/unit cell volume is NULL (Vc). Unactivating component.\n", NAME_CURRENT_COMP);
);
if (line_info.V_0 > 0 && p_inc && !line_info.sigma_i) {
MPI_MASTER(
printf("PowderN: %s: WARNING: You have requested statistics for incoherent scattering but not defined sigma_inc!\n", NAME_CURRENT_COMP);
);
}
if (line_info.flag_barns) { /* Factor 100 to convert from barns to fm^2 */
line_info.XsectionFactor = 100;
} else {
line_info.XsectionFactor = 1;
}
if (line_info.V_0 > 0 && i) {
L = line_info.list;
line_info.q_v = malloc(line_info.count*sizeof(double));
line_info.w_v = malloc(line_info.count*sizeof(double));
line_info.my_s_v2 = malloc(line_info.count*sizeof(double));
if (!line_info.q_v || !line_info.w_v || !line_info.my_s_v2)
exit(fprintf(stderr,"PowderN: %s: ERROR allocating memory (init)\n", NAME_CURRENT_COMP));
for(i=0; i<line_info.count; i++)
{
line_info.my_s_v2[i] = 4*PI*PI*PI*pack*(L[i].DWfactor ? L[i].DWfactor : 1)
/(line_info.V_0*line_info.V_0*V2K*V2K)
*(L[i].j * L[i].F2 / L[i].q)*line_info.XsectionFactor;
/* Is not yet divided by v^2 */
/* Squires [3.103] */
line_info.q_v[i] = L[i].q*K2V;
line_info.w_v[i] = L[i].w;
}
}
if (line_info.V_0 > 0) {
/* Is not yet divided by v */
line_info.my_a_v = pack*line_info.sigma_a/line_info.V_0*2200*100; // Factor 100 to convert from barns to fm^2
line_info.my_inc = pack*line_info.sigma_i/line_info.V_0*100; // Factor 100 to convert from barns to fm^2
MPI_MASTER(
printf("PowderN: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
NAME_CURRENT_COMP, line_info.V_0, line_info.sigma_a, line_info.sigma_i, reflections && strlen(reflections) ? reflections : "NULL");
);
}
/* update JS, 1/7/2017
Get target coordinates relative to the local reference frame.
*/
if (target_index) {
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &tgt_x, &tgt_y, &tgt_z);
NORM(tgt_x, tgt_y, tgt_z);
printf("PowderN: Target direction = (%g %g %g)\n",tgt_x, tgt_y, tgt_z);
} else {
tgt_x=0.0;
tgt_y=0.0;
tgt_z=1.0;
}
%}
TRACE
%{
double t0, t1, t2, t3, v, v1,l_full, l, l_1, dt, alpha0, alpha, theta, my_s, my_s_n, sg;
double solid_angle;
double neutrontype = 0;
double ntype = 0;
double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z, nx, ny, nz, pmul=1;
int line;
char intersect=0;
char intersecti=0;
// Variables calculated within thread for thread purpose only
char type = '\0';
int itype = 0;
double d_phi_thread = d_phi;
// These ones are injected back to struct at the end of TRACE in non-OpenACC case
int nb_reuses = line_info.nb_reuses;
int nb_refl = line_info.nb_refl;
int nb_refl_count = line_info.nb_refl_count;
double vcache = line_info.v;
double Nq = line_info.Nq;
double v_min = line_info.v_min;
double v_max = line_info.v_max;
double lfree = line_info.lfree;
double neutron_passed = line_info.neutron_passed;
long xs_compute = line_info.xs_compute;
long xs_reuse = line_info.xs_reuse;
long xs_calls = line_info.xs_calls;
int flag_warning = line_info.flag_warning;
double dq = line_info.dq;
#ifdef OPENACC
#ifdef USE_OFF
off_struct thread_offdata = offdata;
#endif
#else
#define thread_offdata offdata
#endif
if (line_info.V_0 > 0 && (line_info.count || line_info.my_inc)) {
if (line_info.shape == 1) {
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
} else if (line_info.shape == 0) {
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
} else if (line_info.shape == 2) {
intersect = sphere_intersect (&t0, &t3, x,y,z, vx,vy,vz, radius);
intersecti = sphere_intersect (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
}
#ifdef USE_OFF
else if (line_info.shape == 3) {
intersect = off_intersect (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
intersecti = 0;
}
#endif
}
if(intersect && t3 >0) {
if (concentric) {
/* Set up for concentric case */
/* 'Remove' the backside of this comp */
if (!intersecti) {
t1 = (t3 + t0) /2;
}
t2 = t1;
t3 = t1;
dt = -1.0*rand01(); /* In case of scattering we will scatter on 'forward' part of sample */
} else {
if (!intersecti) {
t1 = (t3 + t0) /2;
t2 = t1;
}
dt = randpm1(); /* Possibility to scatter at all points in line of sight */
}
/* Neutron enters at t=t0. */
if(t0 < 0) t0=0; /* already in sample */
if(t1 < 0) t1=0; /* already in inner hollow */
if(t2 < 0) t2=0; /* already past inner hollow */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (t3 - t2 + t1 - t0);
if (neutron_passed < CHAR_BUF_LENGTH) {
if (v < v_min) v_min = v;
if (v > v_max) v_max = v;
neutron_passed++;
}
/* Calculate total scattering cross section at relevant velocity - but not on GPU*/
#ifndef OPENACC
if ( fabs(v - vcache) < 1e-6) {
nb_reuses++;
} else {
#endif
Nq = calc_xsect(v, line_info.q_v, line_info.my_s_v2, line_info.count, &line_info.my_s_v2_sum, &line_info);
vcache = v;
nb_refl += Nq;
nb_refl_count++;
#ifndef OPENACC
}
#endif
if (t3 < 0) {
t3=0; /* Already past sample?! */
if (flag_warning < 100)
printf("PowderN: %s: Warning: Neutron has already passed us? (Skipped).\n"
" In concentric geometry, this may be caused by a missing concentric=0 option in 2nd enclosing instance.\n", NAME_CURRENT_COMP);
flag_warning++;
} else {
if (dt<0) { /* Calculate scattering point position */
dt = fabs(dt)*(t1 - t0); /* 'Forward' part */
} else {
dt = dt * (t3 - t2) + (t2-t0) ; /* Possibly also 'backside' part */
}
my_s = line_info.my_s_v2_sum/(v*v)+line_info.my_inc;
/* Total attenuation from scattering */
lfree=0;
ntype = rand01();
/* How to handle this one? Transmit (1) / Incoherent (2) / Coherent (3) ? */
if (ntype < p_transmit) {
neutrontype = 1;
l = l_full; /* Passing through, full length */
PROP_DT(t3);
} else if (ntype >= p_transmit && ntype < (p_transmit + p_inc)) {
neutrontype = 2;
l = v*dt; /* Penetration in sample */
PROP_DT(dt+t0); /* Point of scattering */
SCATTER;
} else if (ntype >= p_transmit + p_inc) {
neutrontype = 3;
l = v*dt; /* Penetration in sample */
PROP_DT(dt+t0); /* Point of scattering */
SCATTER;
} else {
exit(fprintf(stderr,"PowderN %s: DEAD - this shouldn't happen!\n", NAME_CURRENT_COMP));
}
if (neutrontype == 3) { /* Make coherent scattering event */
if (line_info.count > 0) {
/* choose line */
if (Nq > 1) line=floor(Nq*rand01()); /* Select between Nq powder lines */
else line = 0;
if (line_info.w_v[line])
arg = line_info.q_v[line]*(1+line_info.w_v[line]*randnorm())/(2.0*v);
else
arg = line_info.q_v[line]/(2.0*v);
my_s_n = line_info.my_s_v2[line]/(v*v);
if(fabs(arg) > 1)
ABSORB; /* No bragg scattering possible*/
if (tth_sign == 0) {
sg = randpm1();
if (sg > 0) sg = 1; else sg=-1;
}
else {
sg = tth_sign/fabs(tth_sign);
}
theta = asin(arg); /* Bragg scattering law */
/* Choose point on Debye-Scherrer cone */
if (d_phi_thread)
{ /* relate height of detector to the height on DS cone */
arg = sin(d_phi_thread*DEG2RAD/2)/sin(2*theta);
/* If full Debye-Scherrer cone is within d_phi, don't focus */
if (arg < -1 || arg > 1) d_phi_thread = 0;
/* Otherwise, determine alpha to rotate from scattering plane
into d_phi focusing area*/
else alpha = 2*asin(arg);
}
if (d_phi_thread) {
/* Focusing */
alpha = fabs(alpha);
alpha0 = 0.5*randpm1()*alpha;
if(focus_flip){
alpha0+=M_PI_2;
}
}
else
alpha0 = PI*randpm1();
/* now find a nearly vertical rotation axis:
* Either
* (v along Z) x (X axis) -> nearly Y axis
* Or
* (v along X) x (Z axis) -> nearly Y axis
*/
/* update JS, 1/7/2017
If a target is defined, try to define vertical axis as a normal to the plane
defined by the incident neutron velocity and target position.
Check that v is not ~ parallel to the target direction.
*/
double vnorm=0.0;
if (target_index) {
vec_prod(tmp_vx, tmp_vy, tmp_vz, vx,vy,vz, tgt_x, tgt_y, tgt_z);
vnorm = sqrt(tmp_vx*tmp_vx+tmp_vy*tmp_vy+tmp_vz*tmp_vz)/v;
}
// no target or direction is nearly parallel to v:
if (vnorm<0.01) {
if (fabs(vx/v) < fabs(vz/v)) {
nx = 1; ny = 0; nz = 0;
} else {
nx = 0; ny = 0; nz = 1;
}
vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, nx,ny,nz);
}
/* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */
rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*sg*theta, tmp_vx,tmp_vy,tmp_vz);
/* tmp_v = rotate v_out by alpha0 around 'v' (Debye-Scherrer cone) */
rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, alpha0, vx, vy, vz);
vx = tmp_vx;
vy = tmp_vy;
vz = tmp_vz;
/* Since now scattered and new direction given, calculate path to exit */
if (line_info.shape == 1) {
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
} else if (line_info.shape == 0) {
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
} else if (line_info.shape == 2) {
intersect = sphere_intersect (&t0, &t3, x,y,z, vx,vy,vz, radius);
intersecti = sphere_intersect (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
}
#ifdef USE_OFF
else if (line_info.shape == 3) {
intersect = off_intersect (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
intersecti = 0;
}
#endif
if (!intersect) {
/* Strange error: did not hit cylinder */
if (flag_warning < 100)
printf("PowderN: %s: WARNING: Did not hit sample from inside (coh). ABSORB.\n", NAME_CURRENT_COMP);
flag_warning++;
ABSORB;
}
if (!intersecti) {
t1 = (t3 + t0) /2;
t2 = t1;
}
if (concentric && intersecti) {
/* In case of concentricity, 'remove' backward wall of sample */
t2 = t1;
t3 = t1;
}
if(t0 < 0) t0=0; /* already in sample */
if(t1 < 0) t1=0; /* already in inner hollow */
if(t2 < 0) t2=0; /* already past inner hollow */
l_1 = v*(t3 - t2 + t1 - t0); /* Length to exit */
pmul *= Nq*l_full*my_s_n*exp(-(line_info.my_a_v/v+my_s)*(l+l_1))
/(1-(p_inc+p_transmit));
/* Correction in case of d_phi focusing - BUT only when d_phi != 0 */
if (d_phi_thread) {
pmul *= alpha/PI;
if (tth_sign) pmul *=0.5;
}
type = 'c';
itype = 1;
dq = line_info.q_v[line]*V2K;
lfree=1/(line_info.my_a_v/v+my_s);
} /* else transmit <-- No powder lines in file */
} /* Coherent scattering event */
else if (neutrontype == 2) { /* Make incoherent scattering event */
if (d_omega && d_phi_thread) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
tgt_x, tgt_y, tgt_z, d_omega*DEG2RAD, d_phi_thread*DEG2RAD, ROT_A_CURRENT_COMP);
} else if (d_phi_thread) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
tgt_x, tgt_y, tgt_z,
2*PI, d_phi_thread*DEG2RAD, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz,
&solid_angle, 0, 0, 1, 0);
}
v1 = sqrt(vx*vx+vy*vy+vz*vz);
vx *= v/v1;
vy *= v/v1;
vz *= v/v1;
/* Since now scattered and new direction given, calculate path to exit */
if (line_info.shape == 1) {
intersect = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
} else if (line_info.shape == 0) {
intersect = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
} else if (line_info.shape == 2) {
intersect = sphere_intersect (&t0, &t3, x,y,z, vx,vy,vz, radius);
intersecti = sphere_intersect (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
}
#ifdef USE_OFF
else if (line_info.shape == 3) {
intersect = off_intersect (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
intersecti = 0;
}
#endif
if (!intersect) {
/* Strange error: did not hit cylinder */
if (flag_warning < 100)
printf("PowderN: %s: WARNING: Did not hit sample from inside (inc). ABSORB.\n", NAME_CURRENT_COMP);
flag_warning++;
ABSORB;
}
if (!intersecti) {
t1 = (t3 + t0) /2;
t2 = t1;
}
if (concentric && intersecti) {
/* In case of concentricity, 'remove' backward wall of sample */
t2 = t1;
t3 = t1;
}
if(t0 < 0) t0=0; /* already in sample */
if(t1 < 0) t1=0; /* already in inner hollow */
if(t2 < 0) t2=0; /* already past inner hollow */
l_1 = v*(t3 - t2 + t1 - t0); /* Length to exit */
pmul *= l_full*line_info.my_inc*exp(-(line_info.my_a_v/v+my_s)*(l+l_1))/(p_inc);
pmul *= solid_angle/(4*PI);
lfree=1/(line_info.my_a_v/v+my_s);
type = 'i';
itype = 2;
} /* Incoherent scattering event */
else if (neutrontype == 1) {
/* Make transmitted (absorption-corrected) event */
/* No coordinate changes here, simply change neutron weight */
pmul *= exp(-(line_info.my_a_v/v+my_s)*(l))/(p_transmit);
lfree=1/(line_info.my_a_v/v+my_s);
type = 't';
itype = 3;
}
p *= pmul;
} /* Neutron leaving since it has passed already */
} /* else transmit non interacting neutrons */
// Inject these back to global struct in non-OpenACC case
#ifndef OPENACC
line_info.nb_reuses=nb_reuses;
line_info.nb_refl=nb_refl;
line_info.nb_refl_count=nb_refl_count;
line_info.v=vcache;
line_info.Nq=Nq;
line_info.v_min=v_min;
line_info.v_max=v_max;
line_info.lfree=lfree;
line_info.xs_compute=xs_compute;
line_info.xs_reuse=xs_reuse;
line_info.xs_calls=xs_calls;
line_info.dq=dq;
line_info.neutron_passed = neutron_passed;
#endif
// These should be updated in any case
#pragma acc atomic write
line_info.flag_warning += flag_warning;
//#pragma acc atomic write
//line_info.neutron_passed = neutron_passed;
%}
FINALLY
%{
free(line_info.list);
free(line_info.q_v);
free(line_info.w_v);
free(line_info.my_s_v2);
MPI_MASTER(
if (line_info.flag_warning)
printf("PowderN: %s: Error messages were repeated %i times with absorbed neutrons.\n",
NAME_CURRENT_COMP, line_info.flag_warning);
/* in case this instance is used in a SPLIT, we can recommend the
optimal iteration value */
if (line_info.nb_refl_count) {
double split_iterations = (double)line_info.nb_reuses/line_info.nb_refl_count + 1;
double split_optimal = (double)line_info.nb_refl/line_info.nb_refl_count;
if (split_optimal > split_iterations + 5)
printf("PowderN: %s: Info: you may highly improve the computation efficiency by using\n"
" SPLIT %i COMPONENT %s=PowderN(...)\n"
" in the instrument description %s.\n",
NAME_CURRENT_COMP, (int)split_optimal, NAME_CURRENT_COMP, instrument_source);
}
);
%}
MCDISPLAY
%{
if (line_info.V_0) {
if (line_info.shape == 0) { /* cyl */
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
if (thickness) {
double radius_i=radius-thickness;
circle("xz", 0, yheight/2.0, 0, radius_i);
circle("xz", 0, -yheight/2.0, 0, radius_i);
line(-radius_i, -yheight/2.0, 0, -radius_i, +yheight/2.0, 0);
line(+radius_i, -yheight/2.0, 0, +radius_i, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius_i, 0, +yheight/2.0, -radius_i);
line(0, -yheight/2.0, +radius_i, 0, +yheight/2.0, +radius_i);
}
} else if (line_info.shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
if (line_info.zdepth_i) {
xmin = -0.5*line_info.xwidth_i;
xmax = 0.5*line_info.xwidth_i;
ymin = -0.5*line_info.yheight_i;
ymax = 0.5*line_info.yheight_i;
zmin = -0.5*line_info.zdepth_i;
zmax = 0.5*line_info.zdepth_i;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
} if (line_info.shape == 2) { /* sphere */
if (line_info.radius_i) {
circle("xy",0,0,0,line_info.radius_i);
circle("xz",0,0,0,line_info.radius_i);
circle("yz",0,0,0,line_info.radius_i);
}
circle("xy",0,0,0,radius);
circle("xz",0,0,0,radius);
circle("yz",0,0,0,radius);
} else if (line_info.shape == 3) { /* OFF file */
off_display(offdata);
}
}
%}
END
|