File: PowderN.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (1341 lines) | stat: -rw-r--r-- 52,582 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
/*****************************************************************************
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2008 Risoe National Laboratory, Roskilde, Denmark
*
* Component: PowderN
*
* %I
* Written by: P. Willendrup, L. Chapon, K. Lefmann, A.B.Abrahamsen, N.B.Christensen, E.M.Lauridsen.
* Date: 4.2.98
* Origin: McStas release
* Modified by: KL, KN 20.03.98   (rewrite)
* Modified by: KL,    28.09.01   (two lines)
* Modified by: KL,    22.05.03   (background)
* Modified by: KL, PW 01.05.05   (N lines)
* Modified by: PW, LC 04.10.05   (Merge with Chapon Powder_multi)
* Modified by: PW, KL 05.06.07   (Concentricity)
* Modified by: EF,    17.10.08   (added any shape sample geometry)
* Modified by: MB,    25.07.18   (fixed indexing bug in calc_xsect)
* Modified by: Jan Saroun(JS) '17(added target_index, d_omega, tth_sign)
* Modified by: EF, June 2023     (can now read CIF files)
*
* General powder sample (N lines, single scattering, incoherent scattering)
*
* %D
* General powder sample with
*         many scattering vectors
*         possibility for intrinsic line broadening
*         incoherent elastic background ratio is specified by user
*         No multiple scattering. No secondary extinction.
*
* Based on Powder1/Powder2/Single_crystal.
* Geometry is a powder filled cylinder, sphere, box or any shape from an OFF file.
* Incoherent scattering is only provided here to account for a background.
* The efficient is highly improved when restricting the vertical scattering
*   range on the Debye-Scherrer cone (with 'd_phi' and 'focus_flip').
* The unit cell volume Vc may also be computed when giving the density,
*   the atomic/molecular weight and the number of atoms per unit cell.
* A simple strain handling is available by mean of either a global Strain parameter,
*   or a column with a strain value per Bragg reflection. The strain values are
*   specified in ppm (1e-6).
* The Single_crystal component can also handle a powder mode, as well as an
*   approximated texture.
*
* <b>Sample shape:</b>
* Sample shape may be a cylinder, a sphere, a box or any other shape.
*   box/plate:       xwidth x yheight x zdepth (thickness=0)
*   hollow box/plate:xwidth x yheight x zdepth and thickness>0
*   cylinder:        radius x yheight (thickness=0)
*   hollow cylinder: radius x yheight and thickness>0
*   sphere:          radius (yheight=0 thickness=0)
*   hollow sphere:   radius and thickness>0 (yheight=0)
*   any shape:       geometry=OFF_file
*
*   The complex geometry option handles any closed non-convex polyhedra.
*   It computes the intersection points of the neutron ray with the object
*   transparently, so that it can be used like a regular sample object.
*   It supports the PLY, OFF and NOFF file format but not COFF (colored faces).
*   Such files may be generated from XYZ data using:
*   qhull < coordinates.xyz Qx Qv Tv o > geomview.off
*   or
*     powercrust coordinates.xyz
*   and viewed with geomview or java -jar jroff.jar (see below).
*   The default size of the object depends of the OFF file data, but its
*   bounding box may be resized using xwidth,yheight and zdepth.
*
* If you use this component and produce valuable scientific results, please
* cite authors with references bellow (in <a href="#links">Links</a>).
*
* Example: PowderN(reflections = "c60.lau", d_phi = 15 , radius = 0.01,
*   yheight = 0.05, Vc = 1076.89, sigma_abs = 0, delta_d_d=0, DW=1))
*
* <b>Powder definition file format</b>
* Powder structure is specified with an ascii data file 'reflections'.
* The powder data are free-text column based files.
* The reflection list should be ordered by decreasing d-spacing values.
*       ... d ... F2
* Lines begining by '#' are read as comments (ignored) but they may contain
* the following keywords (in the header):
*   #Vc           <value of unit cell volume Vc [Angs^3]>
*   #sigma_abs    <value of Absorption cross section [barns]>
*   #sigma_inc    <value of Incoherent cross section [barns]>
*   #Debye_Waller <value of Debye-Waller factor DW>
*   #delta_d_d/d    <value of delta_d_d/d width for all lines>
* These values are not read if entered as component parameters (Vc=...)
*
* The signification of the columns in the numerical block may be
* set using the 'format' parameter, by defining signification of the
* columns as a vector of indexes in the order
*   format={j,d,F2,DW,delta_d_d/d,1/2d,q,F,Strain}
*
* Signification of the symbols is given below. Indices start at 1.
* Indices with zero means that the column are not present, so that:
*   Crystallographica={ 4,5,7,0,0,0,0,0,0 }
*   Fullprof         ={ 4,0,8,0,0,5,0,0,0 }
*   Lazy             ={17,6,0,0,0,0,0,13,0}
*
* At last, the format may be overridden by direct definition of the
* column indexes in the file itself by using the following keywords
* in the header (e.g. '#column_j 4'):
*   #column_j     <index of the multiplicity 'j' column>
*   #column_d     <index of the d-spacing 'd' column [Angs]>
*   #column_F2    <index of the squared str. factor '|F|^2' column [b]>
*   #column_F     <index of the structure factor norm '|F|' column>
*   #column_DW    <index of the Debye-Waller factor 'DW' column>
*   #column_Dd    <index of the relative line width delta_d_d/d broadening 'Dd' column>
*   #column_inv2d <index of the 1/2d=sin(theta)/lambda 'inv2d' column>
*   #column_q     <index of the scattering wavevector 'q' column [Angs-1]>
*   #column_strain <index of the strain line shift Delta/d [ppm]>
*
* Last, CIF, FullProf and ShelX files can be read, and converted to F2(hkl) lists
* if 'cif2hkl' is installed. The CIF2HKL env variable can be used to point to a
* proper executable, else the McCode, then the system installed versions are used.
*
* <b>Concentricity</b>
*
* PowderN assumes 'concentric' shape, i.e. can contain other components inside its
* optional inner hollow. Example, Sample in Al cryostat:
*
*
* COMPONENT Cryo = PowderN(reflections="Al.laz", radius = 0.01, thickness = 0.001,
*                          concentric = 1, p_interact=0.1)
* AT (0,0,0) RELATIVE Somewhere
*
* COMPONENT Sample = some_other_component(with geometry FULLY enclosed in the hollow)
* AT (0,0,0) RELATIVE Somewhere
*
* COMPONENT Cryo2 = COPY(Cryo)(concentric = 0)
* AT (0,0,0) RELATIVE Somewhere
*
*
* (The second instance of the cryostat component can also be written out completely
*  using PowderN(...). In both cases, this second instance needs concentric = 0.)
* The concentric arrangment can not be used with OFF geometry specification.
*
* This sample component can advantageously benefit from the SPLIT feature, e.g.
* SPLIT COMPONENT pow = PowderN(...)
*
* %P
* INPUT PARAMETERS
* radius: [m]          Outer radius of sample in (x,z) plane
* xwidth: [m]          Horiz. dimension of sample, as a width
* yheight: [m]         Height of sample y direction
* zdepth: [m]          Depth of box sample
* thickness: []        Thickness of hollow sample. Negative value extends the hollow volume outside of the box/cylinder.
* reflections: [string] Input file for reflections (LAZ LAU CIF, FullProf, ShelX). Use only incoherent scattering if NULL or "" 
* d_phi: [deg]         Angle corresponding to the vertical angular range to focus to, e.g. detector height. 0 for no focusing.
* d_omega: [deg]       Horizontal focus range (only for incoherent scattering), 0 for no focusing.
* tth_sign: [1]        Sign of the scattering angle. If 0, the sign is chosen randomly (left and right). ONLY functional in combination with d_phi and ONLY applies to bragg lines.
* focus_flip:   [1]    Controls the sense of d_phi. If 0 d_phi is measured against the xz-plane. If !=0 d_phi is measured against zy-plane.
* pack: [1]            Packing factor.
* delta_d_d: [0/1]     Global relative delta_d_d/d broadening when the 'w' column is not available. Use 0 if ideal.
* Strain: [ppm]        Global relative delta_d_d/d shift when the 'Strain' column is not available. Use 0 if ideal.
* format: [no quotes]  Name of the format, or list of column indexes (see Description).
* p_inc: [1]           Fraction of incoherently scattered neutron rays.
* p_transmit: [1]      Fraction of transmitted (only attenuated) neutron rays.
* p_interact: [1]      Fraction of events interacting coherently with sample.
* concentric: [1]      Indicate that this component has a hollow geometry and may contain other components. It should then be duplicated after the inside part (only for box, cylinder, sphere).
* geometry: [str]      Name of an Object File Format (OFF) or PLY file for complex geometry. The OFF/PLY file may be generated from XYZ coordinates using qhull/powercrust.
* barns: [1]           Flag to indicate if |F|^2 from 'reflections' is in barns or fm^2 (barns=1 for laz, barns=0 for lau type files).
* sigma_abs: [barns]   Absorption cross section per unit cell at 2200 m/s. Use a negative value to unactivate it.
* sigma_inc: [barns]   Incoherent cross section per unit cell. Use a negative value to unactivate it.
* Vc: [AA^3]           Volume of unit cell=nb atoms per cell/density of atoms.
* DW: [1]              Global Debye-Waller factor when the 'DW' column is not available. Use 1 if included in F2
* weight: [g/mol]      Atomic/molecular weight of material.
* density: [g/cm^3]    Density of material. rho=density/weight/1e24*N_A.
* nb_atoms: [1]        Number of sub-unit per unit cell, that is ratio of sigma for chemical formula to sigma per unit cell
* target_index: [1]    Relative index of component to focus incoherent scattering at, e.g. next is +1
*
* CALCULATED PARAMETERS:
* line_info: [struct]  internal structure containing many members/info
* line_info.type: interaction type of event 't'=Transmit, 'i'=Incoherent, 'c'=Coherent [char]
* line_info.dq:   wavevector transfer of last coherent scattering event [Angs-1]
*
* %L
* "Validation of a realistic powder sample using data from DMC at PSI" Willendrup P, Filges U, Keller L, Farhi E, Lefmann K, Physica B-Cond Matt 385 (2006) 1032.
* %L
* See also: Powder1, Single_crystal
* %L
* See <a href="http://icsd.ill.fr">ICSD</a> Inorganic Crystal Structure Database
* %L
* <a href="http://www.ncnr.nist.gov/resources/n-lengths/">Cross sections for single elements</a>
* %L
* <a href="http://www.ncnr.nist.gov/resources/sldcalc.html>Cross sections for compounds</a>
* %L
* <a href="http://www.webelements.com/">Web Elements</a>
* %L
* <a href="http://www.ill.eu/sites/fullprof/index.html">Fullprof</a> powder refinement
* %L
* <a href="http://www.crystallographica.com/">Crystallographica</a> software (free license)
* %L
* <a href="http://www.geomview.org">Geomview and Object File Format (OFF)</a>
* %L
* Java version of Geomview (display only) <a href="http://www.holmes3d.net/graphics/roffview/">jroff.jar</a>
* %L
* <a href="http://qhull.org">qhull</a>
* %L
* <a href="http://www.cs.ucdavis.edu/~amenta/powercrust.html">powercrust</a>
*
* %E
*****************************************************************************/
DEFINE COMPONENT PowderN

SETTING PARAMETERS (string reflections="NULL", string geometry="NULL",
  vector format={0, 0, 0, 0, 0, 0, 0, 0, 0},
  radius=0, yheight=0, xwidth=0, zdepth=0, thickness=0,
  pack=1, Vc=0, sigma_abs=0, sigma_inc=0, delta_d_d=0, p_inc=0.1, p_transmit=0.1,
  DW=0, nb_atoms=1, d_omega=0, d_phi=0, tth_sign=0, p_interact=0.8,
  concentric=0, density=0, weight=0, barns=1, Strain=0, focus_flip=0, int target_index=0)


/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */

SHARE
%{
/* used for reading data table from file */
%include "read_table-lib"
%include "interoff-lib"
/* Declare structures and functions only once in each instrument. */
#ifndef POWDERN_DECL
#define POWDERN_DECL

struct line_data
{
double F2;                  /* Value of structure factor */
double q;                   /* Qvector */
int j;                      /* Multiplicity */
double DWfactor;            /* Debye-Waller factor */
double w;                   /* Intrinsic line width */
double Epsilon;             /* Strain=delta_d_d/d shift in ppm */
};

struct line_info_struct
{
  struct line_data *list;     /* Reflection array */
  int  count;                  /* Number of reflections */
  double Dd;
  double DWfactor;
  double V_0;
  double rho;
  double at_weight;
  double at_nb;
  double sigma_a;
  double sigma_i;
  char   compname[256];
  double flag_barns;
  int    shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */
  int    column_order[9]; /* column signification */
  int    flag_warning;
  double dq;    /* wavevector transfer [Angs-1] */
  double Epsilon; /* global strain in ppm */
  double XsectionFactor;
  double my_s_v2_sum;
  double my_a_v;
  double my_inc;
  double lfree; // store mean free path for the last event;
  double *w_v,*q_v, *my_s_v2;
  double radius_i,xwidth_i,yheight_i,zdepth_i;
  double v; /* last velocity (cached) */
  double Nq;
  int    nb_reuses, nb_refl, nb_refl_count;
  double v_min, v_max;
  double xs_Nq[CHAR_BUF_LENGTH];
  double xs_sum[CHAR_BUF_LENGTH];
  double neutron_passed;
  long   xs_compute, xs_reuse, xs_calls;
};
 off_struct offdata;
  // PN_list_compare *****************************************************************

  int PN_list_compare (void const *a, void const *b)
  {
     struct line_data const *pa = a;
     struct line_data const *pb = b;
     double s = pa->q - pb->q;

     if (!s) return 0;
     else    return (s < 0 ? -1 : 1);
  } /* PN_list_compare */
  
#ifndef CIF2HKL
#define CIF2HKL
  // hkl_filename = cif2hkl(file, options)
  //   used to convert CIF/CFL/INS file into F2(hkl)
  //   the CIF2HKL env var can point to a cif2hkl executable
  //   else the McCode binary is attempted, then the system.
  char *cif2hkl(char *infile, char *options) {
    char cmd[1024];
    int  ret = 0;
    int  found = 0;
    char *OUTFILE;
    
    // get filename extension
    char *ext = strrchr(infile, '.');
    if(!ext || ext == infile) return infile;
    else ext++;
    
    // return input when no extension or not a CIF/FullProf/ShelX file
    if ( strcasecmp(ext, "cif") 
      && strcasecmp(ext, "pcr")
      && strcasecmp(ext, "cfl")
      && strcasecmp(ext, "shx")
      && strcasecmp(ext, "ins")
      && strcasecmp(ext, "res")) return infile;
      
    OUTFILE = malloc(1024);
    if (!OUTFILE) return infile;
    
    strncpy(OUTFILE, tmpnam(NULL), 1024); // create an output temporary file name
    
    // try in order the CIF2HKL env var, then the system cif2hkl, then the McCode one
    if (!found && getenv("CIF2HKL")) {
      snprintf(cmd,  1024, "%s -o %s %s %s",
        getenv("CIF2HKL"),
        OUTFILE, options, infile);
      ret = system(cmd);
      if (ret != -1 && ret != 127) found = 1;
    }
   if (!found) {
      // try with cif2hkl command from the system PATH
      snprintf(cmd,  1024, "%s -o %s %s %s",
        "cif2hkl", OUTFILE, options, infile);
      ret = system(cmd);
      if (ret != -1 && ret != 127) found = 1;
    }
    if (!found) {
      // As a last resort, attempt with cif2hkl from $MCSTAS/bin
      snprintf(cmd,  1024, "%s%c%s%c%s -o %s %s %s",
        getenv(FLAVOR_UPPER) ? getenv(FLAVOR_UPPER) : MCSTAS,
        MC_PATHSEP_C, "bin", MC_PATHSEP_C, "cif2hkl",
        OUTFILE, options, infile);
      ret = system(cmd);
    }
    // ret = -1:  child process could not be created
    // ret = 127: shell could not be executed in the child process     
    if (ret == -1 || ret == 127) {
      free(OUTFILE);
      return(NULL);
    }
      
    // test if the result file has been created
    FILE *file = fopen(OUTFILE,"r");
    if (!file) {
      free(OUTFILE);
      return(NULL);
    }
    MPI_MASTER(   
    printf("%s: INFO: Converting %s into F2(HKL) list %s\n", 
      __FILE__, infile, OUTFILE);
    printf ("%s\n",cmd);
    );
    fflush(NULL);
    fclose(file);
    return(OUTFILE);
  } // cif2hkl
#endif

  int read_line_data(char *SC_file, struct line_info_struct *info)
  {
    struct line_data *list = NULL;
    int    size = 0;
    t_Table sTable; /* sample data table structure from SC_file */
    int    i=0;
    int    mult_count  =0;
    char   flag=0;
    double q_count=0, j_count=0, F2_count=0;
    char **parsing;
    int    list_count=0;
    char  *filename=NULL;

    if (!SC_file || !strlen(SC_file) || !strcmp(SC_file, "NULL")) {
      MPI_MASTER(
      printf("PowderN: %s: Using incoherent elastic scattering only.\n",
          info->compname);
      );
      info->count = 0;
      return(0);
    }
    filename = cif2hkl(SC_file, "--mode NUC");
    long retval = Table_Read(&sTable, filename, 1); /* read 1st block data from SC_file into sTable*/
    if (retval<0) {
      fprintf(stderr,"PowderN: Could not open file %s - exiting!\n",SC_file);
      exit(-1);
    }

    /* parsing of header */
    parsing = Table_ParseHeader(sTable.header,
      "Vc","V_0",
      "sigma_abs","sigma_a ",
      "sigma_inc","sigma_i ",
      "column_j",
      "column_d",
      "column_F2",
      "column_DW",
      "column_Dd",
      "column_inv2d", "column_1/2d", "column_sintheta/lambda",
      "column_q", /* 14 */
      "DW", "Debye_Waller",
      "delta_d_d/d",
      "column_F ",
      "V_rho",
      "density",
      "weight",
      "nb_atoms","multiplicity", /* 23 */
      "column_ppm","column_strain",
      NULL);

    if (parsing) {
      if (parsing[0] && !info->V_0)     info->V_0    =atof(parsing[0]);
      if (parsing[1] && !info->V_0)     info->V_0    =atof(parsing[1]);
      if (parsing[2] && !info->sigma_a) info->sigma_a=atof(parsing[2]);
      if (parsing[3] && !info->sigma_a) info->sigma_a=atof(parsing[3]);
      if (parsing[4] && !info->sigma_i) info->sigma_i=atof(parsing[4]);
      if (parsing[5] && !info->sigma_i) info->sigma_i=atof(parsing[5]);
      if (parsing[6])                   info->column_order[0]=atoi(parsing[6]);
      if (parsing[7])                   info->column_order[1]=atoi(parsing[7]);
      if (parsing[8])                   info->column_order[2]=atoi(parsing[8]);
      if (parsing[9])                   info->column_order[3]=atoi(parsing[9]);
      if (parsing[10])                  info->column_order[4]=atoi(parsing[10]);
      if (parsing[11])                  info->column_order[5]=atoi(parsing[11]);
      if (parsing[12])                  info->column_order[5]=atoi(parsing[12]);
      if (parsing[13])                  info->column_order[5]=atoi(parsing[13]);
      if (parsing[14])                  info->column_order[6]=atoi(parsing[14]);
      if (parsing[15] && info->DWfactor<=0)    info->DWfactor=atof(parsing[15]);
      if (parsing[16] && info->DWfactor<=0)    info->DWfactor=atof(parsing[16]);
      if (parsing[17] && info->Dd <0)          info->Dd      =atof(parsing[17]);
      if (parsing[18])                  info->column_order[7]=atoi(parsing[18]);
      if (parsing[19] && !info->V_0)    info->V_0    =1/atof(parsing[19]);
      if (parsing[20] && !info->rho)    info->rho    =atof(parsing[20]);
      if (parsing[21] && !info->at_weight)     info->at_weight    =atof(parsing[21]);
      if (parsing[22] && info->at_nb <= 1)  info->at_nb    =atof(parsing[22]);
      if (parsing[23] && info->at_nb <= 1)  info->at_nb    =atof(parsing[23]);
      if (parsing[24])                  info->column_order[8]=atoi(parsing[24]);
      if (parsing[25])                  info->column_order[8]=atoi(parsing[25]);
      for (i=0; i<=25; i++) if (parsing[i]) free(parsing[i]);
      free(parsing);
    }

    if (!sTable.rows)
      exit(fprintf(stderr, "PowderN: %s: Error: The number of rows in %s "
       "should be at least %d\n", info->compname, SC_file, 1));
    else
      size = sTable.rows;

    MPI_MASTER(
    Table_Info(sTable);
    printf("PowderN: %s: Reading %d rows from %s\n",
          info->compname, size, SC_file);
    );

    if (info->column_order[0] == 4 && info->flag_barns !=0)
    MPI_MASTER(
      printf("PowderN: %s: Powder file probably of type Crystallographica/Fullprof (lau)\n"
           "WARNING: but F2 unit is set to barns=1 (barns). Intensity might be 100 times too high.\n",
           info->compname);
    );
    if (info->column_order[0] == 17 && info->flag_barns == 0)
    MPI_MASTER(
      printf("PowderN: %s: Powder file probably of type Lazy Pulver (laz)\n"
           "WARNING: but F2 unit is set to barns=0 (fm^2). Intensity might be 100 times too low.\n",
           info->compname);
    );
    /* allocate line_data array */
    list = (struct line_data*)malloc(size*sizeof(struct line_data));

    for (i=0; i<size; i++)
    {
      /*      printf("Reading in line %i\n",i);*/
      double j=0, d=0, w=0, q=0, DWfactor=0, F2=0, Epsilon=0;
      int index;

      if (info->Dd >= 0)      w         = info->Dd;
      if (info->DWfactor > 0) DWfactor  = info->DWfactor;
      if (info->Epsilon)      Epsilon   = info->Epsilon*1e-6;

      /* get data from table using columns {j d F2 DW Dd inv2d q F} */
      /* column indexes start at 1, thus need to substract 1 */
      if (info->column_order[0] >0)
        j = Table_Index(sTable, i, info->column_order[0]-1);
      if (info->column_order[1] >0)
        d = Table_Index(sTable, i, info->column_order[1]-1);
      if (info->column_order[2] >0)
        F2 = Table_Index(sTable, i, info->column_order[2]-1);
      if (info->column_order[3] >0)
        DWfactor = Table_Index(sTable, i, info->column_order[3]-1);
      if (info->column_order[4] >0)
        w = Table_Index(sTable, i, info->column_order[4]-1);
      if (info->column_order[5] >0 && !(info->column_order[1] >0)) // Only use if d not read already
        { d = Table_Index(sTable, i, info->column_order[5]-1);
          d = (d > 0? 1/d/2 : 0); }
      if (info->column_order[6] >0 && !(info->column_order[1] >0)) // Only use if d not read already  
        { q = Table_Index(sTable, i, info->column_order[6]-1);
          d = (q > 0 ? 2*PI/q : 0); }
      if (info->column_order[7] >0  && !F2)
        { F2 = Table_Index(sTable, i, info->column_order[7]-1); F2 *= F2; }
      if (info->column_order[8] >0  && !Epsilon)
        { Epsilon = Table_Index(sTable, i, info->column_order[8]-1)*1e-6; }

      /* assign and check values */
      j        = (j > 0 ? j : 0);
      q        = (d > 0 ? 2*PI/d : 0); /* this is q */
      if (Epsilon && fabs(Epsilon) < 1e6) {
        q     -= Epsilon*q; /* dq/q = -delta_d_d/d = -Epsilon */
      }
      DWfactor = (DWfactor > 0 ? DWfactor : 1);
      w        = (w>0 ? w : 0); /* this is q and d relative spreading */
      F2       = (F2 >= 0 ? F2 : 0);
      if (j == 0 || q == 0) {
        MPI_MASTER(
        printf("PowderN: %s: line %i has invalid definition\n"
               "         (mult=0 or q=0 or d=0)\n", info->compname, i);
        );
        continue;
      }
      list[list_count].j = j;
      list[list_count].q = q;
      list[list_count].DWfactor = DWfactor;
      list[list_count].w = w;
      list[list_count].F2= F2;
      list[list_count].Epsilon = Epsilon;

      /* adjust multiplicity if j-column + multiple d-spacing lines */
      /* if  d = previous d, increase line duplication index */
      if (!q_count)      q_count  = q;
      if (!j_count)      j_count  = j;
      if (!F2_count)     F2_count = F2;
      if (fabs(q_count-q) < 0.0001*fabs(q)
       && fabs(F2_count-F2) < 0.0001*fabs(F2) && j_count == j) {
       mult_count++; flag=0; }
      else flag=1;
      if (i == size-1) flag=1;
      /* else if d != previous d : just passed equivalent lines */
      if (flag) {
        if (i == size-1) list_count++;
      /*   if duplication index == previous multiplicity */
      /*      set back multiplicity of previous lines to 1 */
        if ((mult_count && list_count>0)
            && (mult_count == list[list_count-1].j
                || ((list_count < size) && (i == size - 1)
                    && (mult_count == list[list_count].j))) ) {
          MPI_MASTER(
          printf("PowderN: %s: Set multiplicity to 1 for lines [%i:%i]\n"
                  "         (d-spacing %g is duplicated %i times)\n",
            info->compname, list_count-mult_count, list_count-1, list[list_count-1].q, mult_count);
          );
          for (index=list_count-mult_count; index<list_count; list[index++].j = 1);
          mult_count = 1;
          q_count   = q;
          j_count   = j;
          F2_count  = F2;
        }
        if (i == size-1) list_count--;
        flag=0;
      }
      list_count++;
    } /* end for */

    Table_Free(&sTable);

    /* sort the list with increasing q */
    qsort(list, list_count, sizeof(struct line_data),  PN_list_compare);

    MPI_MASTER(
    printf("PowderN: %s: Read %i reflections from file '%s'\n",
      info->compname, list_count, SC_file);
    );
    
    // remove temporary F2(hkl) file when giving CFL/CIF/ShelX file
    if (filename != SC_file)
      unlink(filename); 

    info->list  = list;
    info->count = list_count;

    return(list_count);
  } /* read_line_data */


/* computes the number of possible reflections (return value), and the total xsection 'sum' */
/* this routine looks for a pre-computed value in the Nq and sum cache tables               */
/* when found, the earch starts from the corresponding lower element in the table           */
#pragma acc routine seq
int calc_xsect(double v, double *qv, double *my_sv2, int count, double *sum,
  struct line_info_struct *line_info) {
  int    Nq = 0, line=0, line0=0;
  *sum=0;

  /* check if a line_info element has been recorded already - not on OpenACC */
  #ifndef OPENACC
  if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) {
    line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min);
    Nq    = line_info->xs_Nq[line];
    *sum  = line_info->xs_sum[line];
    if (!Nq && *sum == 0) {
      /* not yet set: we compute the sum up to the corresponding speed in the table cache */
      double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH;
      for(line0=0; line0<count; line0++) {
        if (qv[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */
          *sum += my_sv2[line0];
          if (Nq < line0+1) Nq=line0+1; /* determine maximum line index which can scatter */
        } else break;
      }
      line_info->xs_Nq[line] = Nq;
      line_info->xs_sum[line]= *sum;
      line_info->xs_compute++;
    } else line_info->xs_reuse++;
    line0 = Nq;
  }

  line_info->xs_calls++;
  #endif

  for(line=line0; line<count; line++) {
    if (qv[line] <= 2*v) { /* q < 2*kf: restrict structural range */
      *sum += my_sv2[line];
      if (Nq < line+1) Nq=line+1; /* determine maximum line index which can scatter */
    } else break;
  }

  return(Nq);
} /* calc_xsect */

#endif /* !POWDERN_DECL */

%}

DECLARE
%{
  struct line_info_struct line_info;
  double *columns;
  off_struct offdata;
  double tgt_x;
  double tgt_y;
  double tgt_z;
%}

INITIALIZE
%{
  /* We ought to clean up the columns variable as format is now a proper vector/array */
  columns = format;

  int i=0;
  struct line_data *L;
  line_info.Dd       = delta_d_d;
  line_info.DWfactor = DW;
  line_info.V_0      = Vc;
  line_info.rho      = density;
  line_info.at_weight= weight;
  line_info.at_nb    = nb_atoms;
  line_info.sigma_a  = sigma_abs;
  line_info.sigma_i  = sigma_inc;
  line_info.flag_barns=barns;
  line_info.shape    = 0;
  line_info.flag_warning=0;
  line_info.Epsilon  = Strain;
  line_info.radius_i =line_info.xwidth_i=line_info.yheight_i=line_info.zdepth_i=0;
  line_info.v  = 0;
  line_info.Nq = 0;
  line_info.v_min = FLT_MAX; line_info.v_max = 0;
  line_info.neutron_passed=0;
  line_info.nb_reuses = line_info.nb_refl = line_info.nb_refl_count = 0;
  line_info.xs_compute= line_info.xs_reuse= line_info.xs_calls =0;
  for (i=0; i< 9; i++) {
    line_info.column_order[i] = (int)columns[i];
  }
  strncpy(line_info.compname, NAME_CURRENT_COMP, 256);

  line_info.shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere, 3:any-shape  */
  if (geometry && strlen(geometry) && strcmp(geometry, "NULL") && strcmp(geometry, "0")) {
    #ifndef USE_OFF
    fprintf(stderr,"Error: You are attempting to use an OFF geometry without -DUSE_OFF. You will need to recompile with that define set!\n");
    exit(-1);
    #else
    if (off_init(geometry, xwidth, yheight, zdepth, 0, &offdata)) {
      line_info.shape=3; thickness=0; concentric=0;
    }
    #endif
  }
  else
    if (xwidth && yheight && zdepth)  line_info.shape=1; /* box */
  else if (radius > 0 && yheight)        line_info.shape=0; /* cylinder */
  else if (radius > 0 && !yheight)       line_info.shape=2; /* sphere */

  if (line_info.shape < 0)
    exit(fprintf(stderr,"PowderN: %s: sample has invalid dimensions.\n"
                        "ERROR    Please check parameter values (xwidth, yheight, zdepth, radius).\n", NAME_CURRENT_COMP));
  if (thickness) {
    if (radius && (radius < fabs(thickness))) {
      MPI_MASTER(
      printf("PowderN: %s: hollow sample thickness is larger than its volume (sphere/cylinder).\n"
                     "WARNING  Please check parameter values. Using bulk sample (thickness=0).\n", NAME_CURRENT_COMP);
      );
      thickness=0;
    }
    else if (!radius && (xwidth < 2*fabs(thickness) || yheight < 2*fabs(thickness) || zdepth < 2*fabs(thickness))) {
      MPI_MASTER(
      printf("PowderN: %s: hollow sample thickness is larger than its volume (box).\n"
                     "WARNING  Please check parameter values.\n", NAME_CURRENT_COMP);
      );
    }
  }

  if (concentric && thickness==0) {
    MPI_MASTER(
    printf("PowderN: %s:Can not use concentric mode\n"
           "WARNING     on non hollow shape. Ignoring.\n",
           NAME_CURRENT_COMP);
    );
    concentric=0;
  }

  if (thickness>0) {
    if (radius>thickness) {
      line_info.radius_i=radius-thickness;
    } else {
      if (xwidth>2*thickness)  line_info.xwidth_i =xwidth -2*thickness;
      if (yheight>2*thickness) line_info.yheight_i=yheight-2*thickness;
      if (zdepth>2*thickness)  line_info.zdepth_i =zdepth -2*thickness;
    }
  } else if (thickness<0) {
    thickness = fabs(thickness);
    if (radius) {
      line_info.radius_i=radius;
      radius=line_info.radius_i+thickness;
    } else {
      line_info.xwidth_i =xwidth;
      line_info.yheight_i=yheight;
      line_info.zdepth_i =zdepth;
      xwidth   =xwidth +2*thickness;
      yheight  =yheight+2*thickness;
      zdepth   =zdepth +2*thickness;
    }
  }

  if (!line_info.yheight_i) {
    line_info.yheight_i = yheight;
  }

  if (!p_interact){
    fprintf(stderr,"WARNING(%s): p_interact=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
    p_interact=1e-2;
  }
  if (!p_inc){
    fprintf(stderr,"WARNING(%s): p_inc=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
    p_inc     =1e-2;
  }
  if (!p_transmit){
    fprintf(stderr,"WARNING(%s): p_transmit=0, adjusting to 0.01, to avoid algorithm instability\n",NAME_CURRENT_COMP);
    p_transmit=1e-2;
  }
  double p_sum=p_interact+p_inc+p_transmit;
  p_interact = p_interact / p_sum;
  p_inc      = p_inc      / p_sum;
  p_transmit = p_transmit / p_sum;

  if (concentric) {
    MPI_MASTER(
    printf("PowderN: %s: Concentric mode - remember to include the 'opposite' copy of this component !\n"
           "WARNING  The equivalent, 'opposite' comp should have concentric=0\n", NAME_CURRENT_COMP);
    );
    if (p_transmit < 0.1) {
      MPI_MASTER(
      printf("PowderN: %s: Concentric mode and p_transmit<0.1 !\n"
        "WARNING  Consider increasing p_transmit as few particles will reach the inner hollow.\n", NAME_CURRENT_COMP);
      );
    }
  }

  if (reflections && strlen(reflections) && strcmp(reflections, "NULL") && strcmp(reflections, "0")) {
    i = read_line_data(reflections, &line_info);
    if (i == 0)
      exit(fprintf(stderr,"PowderN: %s: reflection file %s is not valid.\n"
                          "ERROR    Please check file format (laz or lau).\n", NAME_CURRENT_COMP, reflections));
  }

  /* compute the scattering unit density from material weight and density */
  /* the weight of the scattering element is the chemical formula molecular weight
   * times the nb of chemical formulae in the scattering element (nb_atoms) */
  if (!line_info.V_0 && line_info.at_nb > 0
    && line_info.at_weight > 0 && line_info.rho > 0) {
    /* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */
    /* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */
    line_info.V_0 = line_info.at_nb
      /(line_info.rho/line_info.at_weight/1e24*6.02214199e23);
  }

  /* the scattering unit cross sections are the chemical formula onces
   * times the nb of chemical formulae in the scattering element */
  if (line_info.at_nb > 0) {
    line_info.sigma_a *= line_info.at_nb; line_info.sigma_i *= line_info.at_nb;
  }

  if (line_info.sigma_a<0) line_info.sigma_a=0;
  if (line_info.sigma_i<0) line_info.sigma_i=0;

  if (line_info.V_0 <= 0)
  MPI_MASTER(
    printf("PowderN: %s: density/unit cell volume is NULL (Vc). Unactivating component.\n", NAME_CURRENT_COMP);
  );

  if (line_info.V_0 > 0 && p_inc && !line_info.sigma_i) {
  MPI_MASTER(
    printf("PowderN: %s: WARNING: You have requested statistics for incoherent scattering but not defined sigma_inc!\n", NAME_CURRENT_COMP);
  );
  }

  if (line_info.flag_barns) { /* Factor 100 to convert from barns to fm^2 */
    line_info.XsectionFactor = 100;
  } else {
    line_info.XsectionFactor = 1;
  }

  if (line_info.V_0 > 0 && i) {
    L = line_info.list;

    line_info.q_v = malloc(line_info.count*sizeof(double));
    line_info.w_v = malloc(line_info.count*sizeof(double));
    line_info.my_s_v2 = malloc(line_info.count*sizeof(double));
    if (!line_info.q_v || !line_info.w_v || !line_info.my_s_v2)
      exit(fprintf(stderr,"PowderN: %s: ERROR allocating memory (init)\n", NAME_CURRENT_COMP));
    for(i=0; i<line_info.count; i++)
    {
      line_info.my_s_v2[i] = 4*PI*PI*PI*pack*(L[i].DWfactor ? L[i].DWfactor : 1)
                 /(line_info.V_0*line_info.V_0*V2K*V2K)
                 *(L[i].j * L[i].F2 / L[i].q)*line_info.XsectionFactor;
      /* Is not yet divided by v^2 */
      /* Squires [3.103] */
      line_info.q_v[i] = L[i].q*K2V;
      line_info.w_v[i] = L[i].w;
    }
  }
  if (line_info.V_0 > 0) {
    /* Is not yet divided by v */
    line_info.my_a_v = pack*line_info.sigma_a/line_info.V_0*2200*100;   // Factor 100 to convert from barns to fm^2
    line_info.my_inc = pack*line_info.sigma_i/line_info.V_0*100;   // Factor 100 to convert from barns to fm^2
    MPI_MASTER(
    printf("PowderN: %s: Vc=%g [Angs] sigma_abs=%g [barn] sigma_inc=%g [barn] reflections=%s\n",
      NAME_CURRENT_COMP, line_info.V_0, line_info.sigma_a, line_info.sigma_i, reflections && strlen(reflections) ? reflections : "NULL");
    );
  }
  
  /* update JS, 1/7/2017
    Get target coordinates relative to the local reference frame.
  */
    if (target_index) {
		Coords ToTarget;
		ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
		ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
		coords_get(ToTarget, &tgt_x, &tgt_y, &tgt_z);
		NORM(tgt_x, tgt_y, tgt_z);
		printf("PowderN: Target direction = (%g %g %g)\n",tgt_x, tgt_y, tgt_z);
	} else {
		tgt_x=0.0;
		tgt_y=0.0;
		tgt_z=1.0;
	}	   

%}
TRACE
%{
  double t0, t1, t2, t3, v, v1,l_full, l, l_1, dt, alpha0, alpha, theta, my_s, my_s_n, sg;
  double solid_angle;
  double neutrontype = 0;
  double ntype = 0;
  double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z, nx, ny, nz, pmul=1;
  int    line;
  char   intersect=0;
  char   intersecti=0;
  
  // Variables calculated within thread for thread purpose only 
  char type = '\0';
  int itype = 0;
  double d_phi_thread = d_phi;
  // These ones are injected back to struct at the end of TRACE in non-OpenACC case
  int nb_reuses = line_info.nb_reuses;
  int nb_refl = line_info.nb_refl;
  int nb_refl_count = line_info.nb_refl_count;
  double vcache = line_info.v; 
  double Nq = line_info.Nq;
  double v_min = line_info.v_min;
  double v_max = line_info.v_max;
  double lfree = line_info.lfree;
  double neutron_passed = line_info.neutron_passed;
  long   xs_compute = line_info.xs_compute;
  long   xs_reuse   = line_info.xs_reuse;
  long   xs_calls   = line_info.xs_calls;
  int    flag_warning = line_info.flag_warning;
  double dq = line_info.dq;

  #ifdef OPENACC
  #ifdef USE_OFF
  off_struct thread_offdata = offdata;
  #endif
  #else
  #define thread_offdata offdata
  #endif
  
  if (line_info.V_0 > 0 && (line_info.count || line_info.my_inc)) {
    if (line_info.shape == 1) {
      intersect  = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
      intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
    } else if (line_info.shape == 0) {
      intersect  = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
      intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
    } else if (line_info.shape == 2) {
      intersect  = sphere_intersect  (&t0, &t3, x,y,z, vx,vy,vz, radius);
      intersecti = sphere_intersect  (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
    }
    #ifdef USE_OFF
    else if (line_info.shape == 3) {
      intersect  = off_intersect  (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
      intersecti = 0;
    }
    #endif
  } 

  if(intersect && t3 >0) {

    if (concentric) {
      /* Set up for concentric case */
      /* 'Remove' the backside of this comp */
      if (!intersecti) {
        t1 = (t3 + t0) /2;
      }
      t2 = t1;
      t3 = t1;
      dt = -1.0*rand01(); /* In case of scattering we will scatter on 'forward' part of sample */
    } else {
      if (!intersecti) {
        t1 = (t3 + t0) /2;
        t2 = t1;
      }
      dt = randpm1(); /* Possibility to scatter at all points in line of sight */
    }

    /* Neutron enters at t=t0. */
    if(t0 < 0) t0=0; /* already in sample */
    if(t1 < 0) t1=0; /* already in inner hollow */
    if(t2 < 0) t2=0; /* already past inner hollow */
    v = sqrt(vx*vx + vy*vy + vz*vz);
    l_full = v * (t3 - t2 + t1 - t0);

    if (neutron_passed < CHAR_BUF_LENGTH) {
      if (v < v_min) v_min = v;
      if (v > v_max) v_max = v;
      neutron_passed++;
    }

    /* Calculate total scattering cross section at relevant velocity - but not on GPU*/
    #ifndef OPENACC
    if ( fabs(v - vcache) < 1e-6) {
        nb_reuses++;
    } else {
    #endif
      Nq = calc_xsect(v, line_info.q_v, line_info.my_s_v2, line_info.count, &line_info.my_s_v2_sum, &line_info);
      vcache = v;
      nb_refl += Nq;
      nb_refl_count++;
    #ifndef OPENACC
    }
    #endif

    if (t3 < 0) {
      t3=0; /* Already past sample?! */
      if (flag_warning < 100)
      printf("PowderN: %s: Warning: Neutron has already passed us? (Skipped).\n"
             "         In concentric geometry, this may be caused by a missing concentric=0 option in 2nd enclosing instance.\n", NAME_CURRENT_COMP);
      flag_warning++;
    } else {
      if (dt<0) { /* Calculate scattering point position */
        dt = fabs(dt)*(t1 - t0); /* 'Forward' part */
      } else {
        dt = dt * (t3 - t2) + (t2-t0) ; /* Possibly also 'backside' part */
      }

      my_s = line_info.my_s_v2_sum/(v*v)+line_info.my_inc;
      /* Total attenuation from scattering */
	  lfree=0;
      ntype = rand01();
      /* How to handle this one? Transmit (1) / Incoherent (2) / Coherent (3) ? */
      if (ntype < p_transmit) {
        neutrontype = 1;
        l = l_full; /* Passing through, full length */
        PROP_DT(t3);
      } else if (ntype >= p_transmit && ntype < (p_transmit + p_inc)) {
        neutrontype = 2;
        l = v*dt;       /* Penetration in sample */
        PROP_DT(dt+t0); /* Point of scattering */
        SCATTER;
      } else if (ntype >= p_transmit + p_inc) {
        neutrontype = 3;
        l = v*dt;       /* Penetration in sample */
        PROP_DT(dt+t0); /* Point of scattering */
        SCATTER;
      } else {
        exit(fprintf(stderr,"PowderN %s: DEAD - this shouldn't happen!\n", NAME_CURRENT_COMP));
      }

      if (neutrontype == 3) { /* Make coherent scattering event */
        if (line_info.count > 0) {
          /* choose line */
			if (Nq > 1) line=floor(Nq*rand01());  /* Select between Nq powder lines */
			else line = 0;
			if (line_info.w_v[line])
				arg = line_info.q_v[line]*(1+line_info.w_v[line]*randnorm())/(2.0*v);
			else
				arg = line_info.q_v[line]/(2.0*v);
			my_s_n = line_info.my_s_v2[line]/(v*v);
			if(fabs(arg) > 1)
				ABSORB;                   /* No bragg scattering possible*/
			if (tth_sign == 0) {
				sg = randpm1();
				if (sg > 0) sg = 1; else sg=-1;
			}
			else  {
			  sg = tth_sign/fabs(tth_sign);
			}
			theta = asin(arg);          /* Bragg scattering law */
			  /* Choose point on Debye-Scherrer cone */
			if (d_phi_thread)
			{ /* relate height of detector to the height on DS cone */
				arg = sin(d_phi_thread*DEG2RAD/2)/sin(2*theta);
				/* If full Debye-Scherrer cone is within d_phi, don't focus */
				if (arg < -1 || arg > 1) d_phi_thread = 0;
				/* Otherwise, determine alpha to rotate from scattering plane
				   into d_phi focusing area*/
				else alpha = 2*asin(arg);
			}
			if (d_phi_thread) {
				/* Focusing */
				alpha = fabs(alpha);
				alpha0 = 0.5*randpm1()*alpha;
				if(focus_flip){
					alpha0+=M_PI_2;
				}
			}
			else
				alpha0 = PI*randpm1();

          /* now find a nearly vertical rotation axis:
           * Either
           *  (v along Z) x (X axis) -> nearly Y axis
           * Or
           *  (v along X) x (Z axis) -> nearly Y axis
           */
		   
  /* update JS, 1/7/2017
    If a target is defined, try to define vertical axis as a normal to the plane 
	defined by the incident neutron velocity and target position. 
	Check that v is not ~ parallel to the target direction.
  */
			double vnorm=0.0;
			if (target_index) {
				vec_prod(tmp_vx, tmp_vy, tmp_vz, vx,vy,vz, tgt_x, tgt_y, tgt_z);
				vnorm = sqrt(tmp_vx*tmp_vx+tmp_vy*tmp_vy+tmp_vz*tmp_vz)/v;
			}
			// no target or direction is nearly parallel to v:
			if (vnorm<0.01) {
				if (fabs(vx/v) < fabs(vz/v)) {
					nx = 1; ny = 0; nz = 0;
				} else {
					nx = 0; ny = 0; nz = 1;
				}
				vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, nx,ny,nz);
			}

			  /* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */
			rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*sg*theta, tmp_vx,tmp_vy,tmp_vz);
			
			/* tmp_v = rotate v_out by alpha0 around 'v' (Debye-Scherrer cone) */
			rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, alpha0, vx, vy, vz);
			vx = tmp_vx;
			vy = tmp_vy;
			vz = tmp_vz;
			  
			  /* Since now scattered and new direction given, calculate path to exit */
			if (line_info.shape == 1) {
				intersect  = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
				intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
			} else if (line_info.shape == 0) {
				intersect  = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
				intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
			} else if (line_info.shape == 2) {
				intersect  = sphere_intersect  (&t0, &t3, x,y,z, vx,vy,vz, radius);
				intersecti = sphere_intersect  (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
			}
			#ifdef USE_OFF
			else if (line_info.shape == 3) {
				intersect  = off_intersect  (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
				intersecti = 0;
			}
			#endif

			if (!intersect) {
				/* Strange error: did not hit cylinder */
				if (flag_warning < 100)
				  printf("PowderN: %s: WARNING: Did not hit sample from inside (coh). ABSORB.\n", NAME_CURRENT_COMP);
				flag_warning++;
				ABSORB;
			}

			if (!intersecti) {
				t1 = (t3 + t0) /2;
				t2 = t1;
			}

			if (concentric && intersecti) {
				/* In case of concentricity, 'remove' backward wall of sample */
				t2 = t1;
				t3 = t1;
			}

			if(t0 < 0) t0=0; /* already in sample */
			if(t1 < 0) t1=0; /* already in inner hollow */
			if(t2 < 0) t2=0; /* already past inner hollow */


			l_1 = v*(t3 - t2 + t1 - t0); /* Length to exit */

			pmul  *= Nq*l_full*my_s_n*exp(-(line_info.my_a_v/v+my_s)*(l+l_1))
									  /(1-(p_inc+p_transmit));
			/* Correction in case of d_phi focusing - BUT only when d_phi != 0 */
			if (d_phi_thread) {
			  pmul *= alpha/PI;
			  if (tth_sign) pmul *=0.5;
			}


			type = 'c';
			itype = 1;
			dq = line_info.q_v[line]*V2K;
			lfree=1/(line_info.my_a_v/v+my_s);
        } /* else transmit <-- No powder lines in file */
      }  /* Coherent scattering event */
      else if (neutrontype == 2) {  /* Make incoherent scattering event */
		if (d_omega && d_phi_thread) {
			randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
			  tgt_x, tgt_y, tgt_z, d_omega*DEG2RAD, d_phi_thread*DEG2RAD, ROT_A_CURRENT_COMP);
		} else if (d_phi_thread) {
			randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
                                      tgt_x, tgt_y, tgt_z,
                                      2*PI, d_phi_thread*DEG2RAD, ROT_A_CURRENT_COMP);
        } else {
          randvec_target_circle(&vx, &vy, &vz,
                                &solid_angle, 0, 0, 1, 0);
        }
        v1 = sqrt(vx*vx+vy*vy+vz*vz);
        vx *= v/v1;
        vy *= v/v1;
        vz *= v/v1;

        /* Since now scattered and new direction given, calculate path to exit */
        if (line_info.shape == 1) {
          intersect  = box_intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
          intersecti = box_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.xwidth_i, line_info.yheight_i, line_info.zdepth_i);
        } else if (line_info.shape == 0) {
          intersect  = cylinder_intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);
          intersecti = cylinder_intersect(&t1, &t2, x, y, z, vx, vy, vz, line_info.radius_i, line_info.yheight_i);
        } else if (line_info.shape == 2) {
          intersect  = sphere_intersect  (&t0, &t3, x,y,z, vx,vy,vz, radius);
          intersecti = sphere_intersect  (&t1, &t2, x,y,z, vx,vy,vz, line_info.radius_i);
        }
	#ifdef USE_OFF
	else if (line_info.shape == 3) {
          intersect  = off_intersect  (&t0, &t3, NULL, NULL, x,y,z, vx,vy,vz, 0, 0, 0, thread_offdata);
          intersecti = 0;
        }
	#endif

        if (!intersect) {
          /* Strange error: did not hit cylinder */
          if (flag_warning < 100)
            printf("PowderN: %s: WARNING: Did not hit sample from inside (inc). ABSORB.\n", NAME_CURRENT_COMP);
          flag_warning++;
          ABSORB;
        }

        if (!intersecti) {
          t1 = (t3 + t0) /2;
          t2 = t1;
        }

        if (concentric && intersecti) {
          /* In case of concentricity, 'remove' backward wall of sample */
          t2 = t1;
          t3 = t1;
        }

        if(t0 < 0) t0=0; /* already in sample */
        if(t1 < 0) t1=0; /* already in inner hollow */
        if(t2 < 0) t2=0; /* already past inner hollow */


        l_1 = v*(t3 - t2 + t1 - t0); /* Length to exit */

        pmul *= l_full*line_info.my_inc*exp(-(line_info.my_a_v/v+my_s)*(l+l_1))/(p_inc);
        pmul *= solid_angle/(4*PI);
       	lfree=1/(line_info.my_a_v/v+my_s);
        type = 'i';
	itype = 2;

      }  /* Incoherent scattering event */
      else if (neutrontype == 1) {
        /* Make transmitted (absorption-corrected) event */
        /* No coordinate changes here, simply change neutron weight */
        pmul *= exp(-(line_info.my_a_v/v+my_s)*(l))/(p_transmit);
        lfree=1/(line_info.my_a_v/v+my_s);
        type = 't';
	itype = 3;
      }
      p *= pmul;
    } /* Neutron leaving since it has passed already */
  } /* else transmit non interacting neutrons */
  
  // Inject these back to global struct in non-OpenACC case
  #ifndef OPENACC
  line_info.nb_reuses=nb_reuses;
  line_info.nb_refl=nb_refl;
  line_info.nb_refl_count=nb_refl_count;
  line_info.v=vcache; 
  line_info.Nq=Nq;
  line_info.v_min=v_min;
  line_info.v_max=v_max;
  line_info.lfree=lfree;
  line_info.xs_compute=xs_compute;
  line_info.xs_reuse=xs_reuse;
  line_info.xs_calls=xs_calls;
  line_info.dq=dq;
  line_info.neutron_passed = neutron_passed;  
  #endif
  // These should be updated in any case
  #pragma acc atomic write
  line_info.flag_warning += flag_warning;
  //#pragma acc atomic write
  //line_info.neutron_passed = neutron_passed;

%}

FINALLY
%{
  free(line_info.list);
  free(line_info.q_v);
  free(line_info.w_v);
  free(line_info.my_s_v2);
  MPI_MASTER(
  if (line_info.flag_warning)
    printf("PowderN: %s: Error messages were repeated %i times with absorbed neutrons.\n",
      NAME_CURRENT_COMP, line_info.flag_warning);

  /* in case this instance is used in a SPLIT, we can recommend the
     optimal iteration value */
  if (line_info.nb_refl_count) {
    double split_iterations = (double)line_info.nb_reuses/line_info.nb_refl_count + 1;
    double split_optimal    = (double)line_info.nb_refl/line_info.nb_refl_count;
    if (split_optimal > split_iterations + 5)
      printf("PowderN: %s: Info: you may highly improve the computation efficiency by using\n"
        "    SPLIT %i COMPONENT %s=PowderN(...)\n"
        "  in the instrument description %s.\n",
        NAME_CURRENT_COMP, (int)split_optimal, NAME_CURRENT_COMP, instrument_source);
  }
  );

%}

MCDISPLAY
%{
  if (line_info.V_0) {

    if (line_info.shape == 0) { /* cyl */
      circle("xz", 0,  yheight/2.0, 0, radius);
      circle("xz", 0, -yheight/2.0, 0, radius);
      line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
      line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
      line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
      line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
      if (thickness) {
        double radius_i=radius-thickness;
        circle("xz", 0,  yheight/2.0, 0, radius_i);
        circle("xz", 0, -yheight/2.0, 0, radius_i);
        line(-radius_i, -yheight/2.0, 0, -radius_i, +yheight/2.0, 0);
        line(+radius_i, -yheight/2.0, 0, +radius_i, +yheight/2.0, 0);
        line(0, -yheight/2.0, -radius_i, 0, +yheight/2.0, -radius_i);
        line(0, -yheight/2.0, +radius_i, 0, +yheight/2.0, +radius_i);
      }
    } else if (line_info.shape == 1) {  /* box */
      double xmin = -0.5*xwidth;
      double xmax =  0.5*xwidth;
      double ymin = -0.5*yheight;
      double ymax =  0.5*yheight;
      double zmin = -0.5*zdepth;
      double zmax =  0.5*zdepth;
      multiline(5, xmin, ymin, zmin,
                   xmax, ymin, zmin,
                   xmax, ymax, zmin,
                   xmin, ymax, zmin,
                   xmin, ymin, zmin);
      multiline(5, xmin, ymin, zmax,
                   xmax, ymin, zmax,
                   xmax, ymax, zmax,
                   xmin, ymax, zmax,
                   xmin, ymin, zmax);
      line(xmin, ymin, zmin, xmin, ymin, zmax);
      line(xmax, ymin, zmin, xmax, ymin, zmax);
      line(xmin, ymax, zmin, xmin, ymax, zmax);
      line(xmax, ymax, zmin, xmax, ymax, zmax);
      if (line_info.zdepth_i) {
        xmin = -0.5*line_info.xwidth_i;
        xmax =  0.5*line_info.xwidth_i;
        ymin = -0.5*line_info.yheight_i;
        ymax =  0.5*line_info.yheight_i;
        zmin = -0.5*line_info.zdepth_i;
        zmax =  0.5*line_info.zdepth_i;
        multiline(5, xmin, ymin, zmin,
                  xmax, ymin, zmin,
                  xmax, ymax, zmin,
                  xmin, ymax, zmin,
                  xmin, ymin, zmin);
        multiline(5, xmin, ymin, zmax,
                  xmax, ymin, zmax,
                  xmax, ymax, zmax,
                  xmin, ymax, zmax,
                  xmin, ymin, zmax);
        line(xmin, ymin, zmin, xmin, ymin, zmax);
        line(xmax, ymin, zmin, xmax, ymin, zmax);
        line(xmin, ymax, zmin, xmin, ymax, zmax);
        line(xmax, ymax, zmin, xmax, ymax, zmax);
      }
    } if (line_info.shape == 2) { /* sphere */
      if (line_info.radius_i) {
        circle("xy",0,0,0,line_info.radius_i);
        circle("xz",0,0,0,line_info.radius_i);
        circle("yz",0,0,0,line_info.radius_i);
      }
      circle("xy",0,0,0,radius);
      circle("xz",0,0,0,radius);
      circle("yz",0,0,0,radius);
    } else if (line_info.shape == 3) {	/* OFF file */
      off_display(offdata);
    }
  }
%}
END