1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*******************************************************************************
*
* McStas, neutron ray-tracing package
* Copyright 1997-2003, All rights reserved
* Risoe National Laboratory, Roskilde, Denmark
* Institut Laue Langevin, Grenoble, France
*
* Component: Sans_spheres
*
* %I
* Written by: P. Willendrup, K. Lefmann, L. Arleth
* Date: 19.12.2003
* Origin: Risoe
* Modified by: KL, 7 June 2005
*
* Sample for Small Angle Neutron Scattering - hard spheres in thin solution, mono disperse.
*
* %D
* Sample for use in a SANS instrument, models hard, mono disperse spheres in thin solution.
* The shape of the sample may be a filled box with dimensions
* xwidth, yheight, zdepth, a cylinder with dimensions radius and yheight,
* a filled sphere with radius.
*
* Example: Sans_spheres(R = 100, Phi = 1e-3, Delta_rho = 0.6, sigma_abs = 50, xwidth=0.01, yheight=0.01, zdepth=0.005)
*
* %P
*
* INPUT PARAMETERS
*
* R: [AA] Radius of scattering hard spheres
* Phi: [1] Particle volume fraction
* Delta_rho: [fm/AA^3] Excess scattering length density
* sigma_abs: [m^-1] Absorption cross section density at 2200 m/s
* radius: [m] Outer radius of sample in (x,z) plane for cylinder/sphere
* xwidth: [m] horiz. dimension of sample, as a width
* yheight: [m] vert . dimension of sample, as a height for cylinder/box
* zdepth: [m] depth of sample
* target_index: [1] Relative index of component to focus at, e.g. next is +1
* focus_xw: [m] horiz. dimension of a rectangular area
* focus_yh: [m] vert. dimension of a rectangular area
* focus_aw: [deg] horiz. angular dimension of a rectangular area
* focus_ah: [deg] vert. angular dimension of a rectangular area
* focus_r: [m] Detector (disk-shaped) radius
*
* Optional parameters:
* target_x: [m]
* target_y: [m] position of target to focus at
* target_z: [m]
*
* Variables calculated in the component
*
* my_s: Attenuation factor due to scattering [m^-1]
* my_a: Attenuation factor due to absorbtion [m^-1]
*
* %Link
* The test/example instrument <a href="../examples/SANS.instr">SANS.instr</a>.
%L
* Some alternative implementations exist as contributed components.
* %E
*******************************************************************************/
DEFINE COMPONENT Sans_spheres
SETTING PARAMETERS (R=100, Phi=1e-3, Delta_rho=0.6, sigma_abs=0.05,
xwidth=0, yheight=0, zdepth=0, radius=0,
target_x = 0, target_y = 0, target_z = 6, int target_index=0,
focus_xw=0, focus_yh=0, focus_aw=0, focus_ah=0, focus_r=0)
/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
double my_s_pre;
double my_a_v;
double shape;
%}
INITIALIZE
%{
shape=-1; /* -1:no shape, 0:cyl, 1:box, 2:sphere */
if (xwidth && yheight && zdepth) shape=1; /* box */
else if (radius > 0 && yheight) shape=0; /* cylinder */
else if (radius > 0 && !yheight) shape=2; /* sphere */
if (shape < 0)
exit(fprintf(stderr,"Sans_spheres: %s: sample has invalid dimensions.\n"
"ERROR Please check parameter values.\n", NAME_CURRENT_COMP));
/* now compute target coords if a component index is supplied */
if (!target_index && !target_x && !target_y && !target_z) target_index=1;
if (target_index)
{
Coords ToTarget;
ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP);
ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget);
coords_get(ToTarget, &target_x, &target_y, &target_z);
}
if (!(target_x || target_y || target_z)) {
printf("Sans_spheres: %s: The target is not defined. Using direct beam (Z-axis).\n",
NAME_CURRENT_COMP);
target_z=1;
}
my_a_v = sigma_abs*2200*100; /* Is not yet divided by v. 100: Convert barns -> fm^2 */
my_s_pre = Phi * 4*PI*R*R*R/3 * Delta_rho*Delta_rho;
%}
TRACE
%{
double t0, t1, v, l_full, l, l_1, dt, d_phi, theta, my_s;
double aim_x=0, aim_y=0, aim_z=1, axis_x, axis_y, axis_z;
double arg, tmp_vx, tmp_vy, tmp_vz, vout_x, vout_y, vout_z;
double f, solid_angle, vx_i, vy_i, vz_i, qx, qy, qz,q;
char intersect=0;
/* Intersection neutron trajectory / sample (sample surface) */
if (shape == 0)
intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius, yheight);
else if (shape == 1)
intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
else if (shape == 2)
intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius);
if(intersect)
{
if(t0 < 0)
ABSORB;
/* Neutron enters at t=t0. */
v = sqrt(vx*vx + vy*vy + vz*vz);
l_full = v * (t1 - t0); /* Length of full path through sample */
dt = rand01()*(t1 - t0) + t0; /* Time of scattering */
PROP_DT(dt); /* Point of scattering */
l = v*(dt-t0); /* Penetration in sample */
vx_i=vx;
vy_i=vy;
vz_i=vz;
if ((target_x || target_y || target_z)) {
aim_x = target_x-x; /* Vector pointing at target (anal./det.) */
aim_y = target_y-y;
aim_z = target_z-z;
}
if(focus_aw && focus_ah) {
randvec_target_rect_angular(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, focus_aw, focus_ah, ROT_A_CURRENT_COMP);
} else if(focus_xw && focus_yh) {
randvec_target_rect(&vx, &vy, &vz, &solid_angle,
aim_x, aim_y, aim_z, focus_xw, focus_yh, ROT_A_CURRENT_COMP);
} else {
randvec_target_circle(&vx, &vy, &vz, &solid_angle, aim_x, aim_y, aim_z, focus_r);
}
NORM(vx, vy, vz);
vx *= v;
vy *= v;
vz *= v;
qx = V2K*(vx_i-vx);
qy = V2K*(vy_i-vy);
qz = V2K*(vz_i-vz);
q = sqrt(qx*qx+qy*qy+qz*qz);
f = 3 * (sin(q*R) - q*R*cos(q*R))/(q*R*q*R*q*R);
l_1 = v*t1;
double pmul=l_full*solid_angle/(4*PI)*my_s_pre*f*f*exp(-my_a_v*(l+l_1)/v);
p = p * pmul;
SCATTER;
}
%}
MCDISPLAY
%{
if (shape == 0) { /* cylinder */
circle("xz", 0, yheight/2.0, 0, radius);
circle("xz", 0, -yheight/2.0, 0, radius);
line(-radius, -yheight/2.0, 0, -radius, +yheight/2.0, 0);
line(+radius, -yheight/2.0, 0, +radius, +yheight/2.0, 0);
line(0, -yheight/2.0, -radius, 0, +yheight/2.0, -radius);
line(0, -yheight/2.0, +radius, 0, +yheight/2.0, +radius);
}
else if (shape == 1) { /* box */
double xmin = -0.5*xwidth;
double xmax = 0.5*xwidth;
double ymin = -0.5*yheight;
double ymax = 0.5*yheight;
double zmin = -0.5*zdepth;
double zmax = 0.5*zdepth;
multiline(5, xmin, ymin, zmin,
xmax, ymin, zmin,
xmax, ymax, zmin,
xmin, ymax, zmin,
xmin, ymin, zmin);
multiline(5, xmin, ymin, zmax,
xmax, ymin, zmax,
xmax, ymax, zmax,
xmin, ymax, zmax,
xmin, ymin, zmax);
line(xmin, ymin, zmin, xmin, ymin, zmax);
line(xmax, ymin, zmin, xmax, ymin, zmax);
line(xmin, ymax, zmin, xmin, ymax, zmax);
line(xmax, ymax, zmin, xmax, ymax, zmax);
}
else if (shape == 2) { /* sphere */
circle("xy", 0, 0.0, 0, radius);
circle("xz", 0, 0.0, 0, radius);
circle("yz", 0, 0.0, 0, radius);
}
%}
END
|